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Prefazione

In questo documento voglio raccorgliere dei complementi alle mie note
rispetto gli appunti relativi al corso di "Introduzione alla Teoria Quanti-
stica dei Campi" svolto dalla professoressa M. Boglione e seguito all’Università
degli studi di Torino nell’a.a. 2025-2026 aggiungendo eventualmente i riferi-
menti a vari libri (più o meno utili a seconda della volontà di approfondire).
Questi appunti sono una riscrittura degli appunti presi in aula ed una lo-
ro estensione quindi la fonte principale sono le note della professoressa, ma
i libri sono fondamentali per una completa comprensione degli argomenti.
Durante il corso sono stati consigliati diversti libri (indicati in Bibliografia),
cercherò di indicare i vari riferimenti bibliografici all’inizio di ogni capitolo.

Tali note devono essere viste come argomenti complementari a quelli vi-
sti durante le lezioni in aula. Le motivazioni per cui ho scritto queste note
è non solo per un maggior approfondimento dei vari argomenti, ma anche
per rendere la transizione dal corso introduttivo al corso di Fondamenti di
Teoria dei Campi più facile.

Chiaramente sono da intendere come degli appunti personali scritti in
bella, eventuali sviste, errori o inesattezze sono dovute alla mia ignoranza,
ma soprattuto ho scritto questi appunti in modo da "spiegare" a me stes-
so l’argomento, quindi alcune parti potrebbero sembrare troppo prolisse o
troppo superficiali per alcuni. In ogni caso fa piacere se possono aiutare
qualcun’altro. Spero in ogni caso di esser riuscito a scrivere un documento
chiaro e ben strutturato.

Alcune volte posso non far riferimento ad un particolare testo o corso
passato, in questi casi mi sto riferendo ai MIEI appunti riguardanti quel-
l’argomento. Una mia collezione di appunti è presente nella mia pagina
personale di GitHub: gCembalo.github.io.

Qualsiasi errore/refuso può essere inviato alla mia mail personale:
gabriele.cembalo02@gmail.com.

Ultimo aggiornamento: 03/12/2025
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Capitolo 1

Introduzione

Non ci sarebbe da scrivere una vera introduzione per queste note, le uniche
cose che posso dire è che sono una continuazione degli appunti di Introdu-
zione alla Teoria Quantistica dei Campi e che conterranno argomenti che
potrebbero ritornare nel corso di Fondamenti della Teoria Quantistica dei
Campi.

Ricordo anche che puoi vedere il file linkato alla mia pagina personale,
in cui ho messo alcuni conti che ho svolto durante lo studio, ma che non ho
avuto voglia di riportare nelle note. Vedi l’indice al termine delle note del
corso di introduzione.

In più, visto che sono argomenti sparsi e potrebbero risultare slegati,
cercherò di indicare sempre i riferimenti bibliografici.
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Capitolo 2

Simmetrie discrete del campo
di Dirac

Vediamo in questo capitolo quali sono le simmetrie discrete che possiede il
campo spinoriale di Dirac. Può essere visto come una parte attaccata al
capitolo relativo alla teoria dei gruppi (oppure vedi le mie note Gemme di
teoria dei gruppi), ma con qualche spolverata di Fisica. Rileggi brevemente
la sezione riguardo l’equazione di Dirac in cui abbiamo giusto accennato due
cose sulla trasformazione di parità. Il riferimento principale è il capitolo 3.6
sul Peskin e Schroeder [2], ma puoi anche vedere il capitolo 15 del Lancaster e
Blundell [1]. Una descrizione (che non abbiamo seguito) fatta bene è presente
anche sullo Srednicki [4].

Come abbiamo avuto modo di vedere, ci sono alcune trasformazioni che
non appartengono al gruppo di Lorentz ristretto L↑

+, tra di esse ci sono:

• Trasformazione di parità P .

• Inversione temporale T .

• Coniugazione di carica C.

Analizzeremo nel corso del capitolo ciascuna di essere, ma perché? Perché ci
si è resi conto, dalle osservazioni sperimentali, che la natura rispetta la sim-
metria per trasformazioni CPT . Infatti, ad esempio, le interazioni forti, EM
e gravitazionale sono simmetriche per C, P e T separatamente. Allo stesso
tempo le interazioni deboli violano C e P separatamente, ma rispettano le
simmetrie CP e T (apparte alcuni casi particolari rari).

In particolare, una Teoria Quantistica dei Campi costruita in modo cor-
retto deve possedere simmetria CPT , il che vuol dire che se invertiamo le
4 coordinate dello spazio-tempo e cambiamo le cariche, quindi scambiamo
particelle con antiparticelle, allora tutto dev’essere invariante. Questo va
sotto il nome di teorema CPT. Una conseguenza del teorema è che la massa
e il tempo di vita di una qualsiasi particella devono essere identici a quelli
della corrispettiva antiparticella.
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4 CAPITOLO 2. Simmetrie discrete del campo di Dirac

2.1 Parità

In generale, per una trasformazione di Lorentz abbiamo:

ψ(x) −→
T.L.

ψ′(x′) = S(Λ)ψ(x). (2.1.1)

Per una trasformazione di parità, abbiamo visto con l’equazione:

ψ −→
P.

ψ′(x′) = Spψ(x) (2.1.2)

in cui vale:
Sp = ηpγ

0 (2.1.3)

che:
ψ(x) −→

P.
ψ′(x′) = SPψ(x) con SP = ηPγ

0 (2.1.4)

in cui ηP = eiφ con φ ∈ R. Una trasformazione di parità consiste sostanzial-
mente in un’inversione spaziale e, come sappiamo, riesce a invertire l’impulso
di una particella, ma non il suo spin. Una descrizione pittorica della trasfor-
mazione è quella che da il Peskin e Schroeder che ho riportato in figura 2.1.

Figura 2.1

Come sappiamo, una trasformazione di Lorentz trasforma il campo ψ(x)
tramite una matrice 4x4 costante, ci aspettiamo quindi anche di poter rappre-
sentare la trasformazione di parità tramite matrici 4x4, e allo stesso tempo,
trattando ψ̂(x) come un’operatore, di scrivere una trasformazione per esso
del tipo:

SP ψ̂(x)SP = ηPγ
0ψ̂(t,−x⃗). (2.1.5)

Nota che scriviamo SP ψ̂(x)SP e non S−1
P ψ̂(x)SP perché vale che S−1

P = S†
P ,

essendo la partià rappresentabile da un’operatore unitario (poiché S2
P = 1),

e con un’abuso di notazione scriviamo SP ψ̂(x)SP , ovviamente intendendo
che uno dei due operatori SP sia l’inverso dell’altro.

Per riuscire a trovare dei risultati concreti riformuliamo il tutto utilizzan-
do il linguaggio della QFT, ossia, riformuliamo tutto in termini di operatori
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di creazione e distruzione e degli stati di singola particella che essi creano
agendo sul vuoto:

â†s(p⃗) |0⟩ , b̂†s(p⃗) |0⟩ . (2.1.6)

L’operatore di parità trasforma ogni stato (2.1.6) come:â
†
s(p⃗) |0⟩ −→

P.
â†s(−p⃗) |0⟩

b̂†s(p⃗) |0⟩ −→
P.

b̂†s(−p⃗) |0⟩
(2.1.7)

per cui dobbiamo avere che:{
SP âs(p⃗)SP = ηaâs(−p⃗)
SP b̂s(p⃗)SP = ηbb̂s(−p⃗)

(2.1.8)

conseguentemente: {
SP â

†
s(p⃗)SP = η∗aâ

†
s(−p⃗)

SP b̂
†
s(p⃗)SP = η∗b b̂

†
s(−p⃗)

(2.1.9)

e siccome due applicazioni successive dell’operatore di parità devono portare
l’osservabile al suo valore originale, e siccome le osservabili sono costituite
da un numero pari di operatori fermionici, allora si ha:

|ηa,b|2 = 1 =⇒ ηa,b = ±1. (2.1.10)

Visto come trasformano gli operatori di creazione e distruzione possiamo
calcolare come trasforma l’operatore ψ̂(x) esprimendolo in termini di â(†) e
b̂(†). Ricordando l’espressione del campo spinoriale quantizzato scriviamo:

SP ψ̂(x)SP −→
P.

∫
d3p

(2π)3/2
1√
2Ep

∑
k

[
ηaâs(−p⃗)

(
us(p⃗)e

−ipx
)′
+

+ η∗b b̂
†
s(−p⃗)

(
vs(p⃗)e

+ipx
)′ ] (2.1.11)

in cui abbiamo lasciato da trasformare le parentesi con gli spinori us e vs.
Ora, indichiamo:

p̃µ = (p0,−p⃗) = (Ep,−p⃗) (2.1.12)

da cui consegue:

px = pµx
µ = p̃ · (t, x⃗) = p̃µx̃

µ = p̃x̃ (2.1.13)

ma anche che:

p̃ · σ = p · σ (2.1.14)
p̃ · ←−σ = p · σ. (2.1.15)
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Gli spinori quindi trasformano come:{
v(p⃗) = γ0v(p̃)

v(p⃗) = −γ0v(p̃)
(2.1.16)

è facile dimostrarlo (vedi pagina 65 del Peskin) utilizzando le relazioni tra p
e σ di sopra. Quindi otteniamo:

SP ψ̂(x)SP −→
P.

∫
d3p̃

(2π)3/2
1√
2Ep

∑
k

[
ηaâs(p̃)us(p̃)e

−ip̃x̃−

− η∗b b̂†s(p̃)vs(p̃)e+ip̃x̃

]
(2.1.17)

che mi aspetto essere proporzionale ad ψ̂(t,−x⃗). Possiamo rispettare le
nostre aspettative richiedendo che:

η∗b = −ηa (2.1.18)

così che si fattorizzino e si cambi il segno, ma che implica anche che:

ηaηb = −ηaη∗a = −1. (2.1.19)

Per convenzione si sceglie ηa = +1 e dunque ηb = −ηa = −1. Troviamo
quindi:

SP ψ̂(x)SP −→
P.

ηaγ
0ψ̂(t,−x⃗) (2.1.20)

con |ηa|2 = 1.
Grazie alla trasformazione (2.1.20) il Peskin verifica anche tutte le pro-

prietà di trasformazione degli invarianti bilineari sotto parità.

Facciamo un’attimo un breve appunto sull’operatore di parità. Abbiamo
riportato la figura 2.1 del Peskin e Schroeder per rappresentare una trasfor-
mazione di parità, ma chi la spiega effettivamente bene è il Lancaster e Blun-
dell. Loro ci dicono: quando guardiamo una certa immagine in uno specchio
tutto sembra uguale, ma allo stesso tempo diverso. Quando guardiamo una
mano riflessa, ovviamente se contiamo il numero di dita esso rimane lo stes-
so. Allo stesso tempo però, ci rendiamo conto che lo specchio ci mostra una
realtà opposta a quella in cui effettivamente viviamo, ribaltando la coordina-
ta spaziale perpendicolare alla superficie dello specchio e lasciando invariate
le altre due. L’effetto dello specchio non può essere ricostruito tramite delle
rotazioni. Però se dopo lo specchio agiamo con una rotazione di 180◦ attor-
no l’asse perpendicolare allo specchio, allora otteniamo una trasformazione
di inversione, che è rappresentata dall’operatore di parità P di cui abbia-
mo parlato. Successivamente all’inversione, come già detto, otteniamo come
risultato che tutte e tre le coordinate spaziali risultano ribaltate.
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Però, non tutte le quantità si trasformano ugualmente sotto parità. Ab-
biamo parlato ad esempio delle dita della mano, il cui numero non viene
modificato con lo specchio; le quantità invarianti sotto P si chiamano scala-
ri. Per i vettori, come ad esempio il campo elettrico, l’azione di P ha l’effetto
di cambiamento di segno ottenendo l’oggetto opposto. Però, esistono anche
degli oggetti intermedi, ossia oggetti che sono matematicamente scalari o
vettori, ma che non si comportano come tali. Chiamiamo pseudoscalari
gli oggetti che sono effettivamente scalari, ma che sotto parità cambiano se-
gno. Allo stesso modo chiamiamo pseudovettori gli oggetti che sono vettori
(formati dal prodotto esterno di due vettori, a volte chiamati vettori polati),
ma che sotto l’azione di P non cambiano segno. Riassumiamo brevemente i
risultati:

P (scalare) = scalare

P (pseudoscalare) = -pseudoscalare

P (vettore) = -vettore

P (pseudovettore) = pseudovettore.

Tutto quello che abbiamo detto è riassunto nelle figure (2.2) e (2.3).

Figura 2.2: Operazione di parità
composta dal riflesso su uno specchio
e una rotazione di 180◦ attorno l’asse
perpendicolare lo specchio stesso.

Figura 2.3: Operazione di parità su
quantità fisiche. Possiamo vedere che
il momento angolare L⃗ e il campo ma-
gnetico B⃗ si comportano come pseu-
dovettori, ma il campo elettrico E⃗ co-
me un vettore.
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2.2 Inversione temporale

Vediamo in questa sezione la trasformazione, che chiamiamo T , dell’inver-
sione temporale. Come la parità, e come vedremo la coniugazione di carica,
vorremmo che anche T fosse un’operatore unitario e vorremmo che agisse nel
modo seguente: âs(p⃗) −→

T.
âs(−p⃗)

ψ(t, x⃗) −→
T.

ψ(−t, x⃗)
(2.2.1)

ossia una trasformazione che inverte l’asse temporale. Ovviamente ci sono
relazioni analoghe anche per l’operatore b̂ di antiparticella. Notiamo che
invertendo il segno del tempo, la velocità cambia segno e di conseguenza
anche l’impulso.

Ad ogni modo, ottenere una trasformazione di questo tipo è molto difficile
poiché, come abbiamo già avuto modo di vedere, l’operazione di mandare
p⃗ → −p⃗ implica la trasformazione (t, x⃗) → (t,−x⃗) nello sviluppo di ψ̂(x)
in termini di operatori di creazione e distruzione. Ci si può anche rendere
conto che la difficoltà cresce se si vuole imporre che T sia una simmetria per
la teoria di Dirac.

Quello che si può fare è rinunciare ad avere T definito in modo conven-
zionale, ma pur mantenendo l’unitarietà (cose che non vogliamo perdere se
vogliamo preservare la probabilità). Definiamo quindi un’operatore unitario,
quindi tale per cui:

T−1 = T † (2.2.2)

che non agisce solamente sugli operatori, ma anche sui c-numeri tramite
un’operazione di complessa coniugazione:

T (c-numero) = (c-numero)∗ T. (2.2.3)

In questo modo, anche se T è simmetria del sistema, ovvero se [T,H] = 0,
abbiamo che Te−iHt = e+iHtT e dal momento che l’evoluzione temporale
avviene con gli operatori e−iHt ed e+iHt, allora effettivamente T inverte la
freccia del tempo. Puoi vedere i conti sul Peskin e Schroeder. Notiamo
anche che definendo così l’operatore T perdiamo la linearità, da momento
che l’operatore complesso coniugato non è un’operazione lineare, infatti, T
è detto operatore antiunitario o antilineare.1

Oltre ad invertire il senso dell’asse temporale, T inverte anche la proie-
zione dello spin; cosa importante poiché ψ̂ ha una struttura spinoriale data

1Il Lancaster e Blundell spiega molto bene l’inversione temporale, in particolare ci
dice che cos’è un operatore antiunitario e perché dobbiamo introdurlo. Quando invertia-
mo l’asse temporale, ma lasciamo invariato lo spazio vogliamo delle trasformazioni che
facciano:

T−1x̂T = x̂ , T−1p̂T = p̂ (2.2.4)
e l’unico modo che abbiamo per rispettare la regola di commutazione tra posizione ed
impulso [x̂, p̂] = i deve valere T−1iT = −i, che è proprio la relazione tipica degli operatori
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da us e vs con s = 1, 2. Il Peskin e Schroeder danno un’immagine pittorica
della trasformazione che riporto in figura 2.4.

Figura 2.4

È utile ricrodare le convenzioni che avevamo scelto nella sezione in cui
avevamo parlato delle soluzioni dell’equazione di Dirac, in particolare ri-
cordare che associavamo gli spinori us(p⃗) alle particelle fermioniche e vs(p⃗)
alle antiparticelle, ma anche rinfrescare la memoria sulla forma degli spinori
bidimensionali χ1,2 e ϕ1,2. Notiamo anche che l’operazione di T , nel passag-
gio particella e antiparticella ci fa fare, automaticamente anche lo scambio
up→down, cioè, se per le particelle avevamo spin s, per le antiparticelle
avremo −s nel pedice associato agli spinori; dunque scriviamo ad esempio
ϕs = χ−s.

Con un po’ di algebra, e se vuoi con l’aiuto del Peskin, si può dimostrare
che l’operazione che effettivamente "flippi" la componente di spin sia:{

u−s(p̃) = −γ1γ3
[
us(p⃗)

]∗
v−s(p̃) = −γ1γ3

[
vs(p⃗)

]∗ (2.2.6)

in cui p̃ = (p0,−p⃗) = (Ep,−p⃗). Le relazioni (2.2.6) rendono esplicito il fatto
che l’inversione temporale richieda un’operazione di complessa coniugazione.
Per gli operatori di distruzione possiamo scrivere:{

T âs(p⃗)T = â−s(−p⃗)
T b̂s(p⃗)T = b̂−s(−p⃗)

(2.2.7)

a meno di un fattore di fase ηT del tutto ininfluente che possiamo omettere
per semplicità.

Viste le proprietà di trasformazione degli spinori e degli operatori di
creazione e distruzione possiamo vedere come si trasformi il campo sotto
queste trasformazioni (mettiamo esplicitamente gli operatori T † per vedere

antiunitari. Gli operatori antiunitari, chiamiamolo S, non sono lineari e vale:

S(a |ϕ⟩+ b |χ⟩) = a∗S |ϕ⟩+ b∗S |χ⟩ (2.2.5)

proprietà che, tra l’altro, giustifica il fatto che anche dei c-numeri si trasformino sotto
azione di S, cosa che diremmo non succedere visto che seppur c-numeri sono comunque
numeri e quindi che commutino con tutto.



10 CAPITOLO 2. Simmetrie discrete del campo di Dirac

meglio le trasformazioni):

T †ψ̂(t, x⃗)T =

∫
d3p

(2π)3/2
1√
2Ep

∑
s

T †
(
âs(p⃗)us(p⃗)e

−ipx+

+ b̂†s(p⃗) vs(p⃗)e
+ipx

)
T (2.2.8)

=

∫
d3p

(2π)3/2
1√
2Ep

∑
s

T †
(
âs(p⃗) TT

†︸︷︷︸
=1

us(p⃗)e
−ipx+

+ b̂†s(p⃗) TT
†︸︷︷︸

=1

vs(p⃗)e
+ipx

)
T (2.2.9)

=

∫
d3p

(2π)3/2
1√
2Ep

∑
s

(
â−s(−p⃗)u∗s(p⃗)e+ipx+

+ b̂†−s(−p⃗) v∗s(p⃗)e−ipx
)

(2.2.10)

ricordandoci che T agisce anche sui c-numeri restituendone il complesso
coniugato. Continuando i conti:

T †ψ̂(t, x⃗)T = (γ1γ3)

∫
d3p̃

(2π)3/2
1√
2Ep

∑
s

(
â−s(p̃)u−s(p̃)e

+ip̃·(t,−x⃗)+

+ b̂†−s(p̃) v−s(p̃)e
−ip̃·(t,−x⃗)

)
(2.2.11)

notando che p̃ · (t,−x⃗) = −p̃ · (−t, x⃗), allora possiamo finalmente scrivere:

T †ψ̂(t, x⃗)T = γ1γ3ψ̂(−t, x⃗). (2.2.12)

Come per la parità (e la coniugazione di carica) sul Peskin e Schroeder
ci sono le proprietà di trasformazione anche degli invarianti bilineari.

2.3 Coniugazione di carica

La trasformazione di coniugazione di carica, che indichiamo con C, è conven-
zionalmente definita come l’operazione che trasforma un fermione, con una
certa proiezione di spin, in un anti-fermione con stessa proiezione di spin.
In generale, quello che fa è mandare una particella in un’antiparticella la-
sciandone invariata la proiezione dello spin e cambiandone tutte le quantità
charge-like, ossia tutte le quantità collegate alla carica, ossia, carica elettrica,
numero leptonico, hypercarica etc. . Il Lancaster e Blundell lo rappresentano
con la figura 2.5.
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Figura 2.5

Quello che fa una trasformazione di questo tipo è:{
Câs(p⃗)C = b̂s(p⃗)

Cb̂s(p⃗)C = âs(p⃗)
(2.3.1)

a meno di una fase ηC che ignoriamo per semplicità. Relazioni analoghe
anche per gli operatori di creazione. Gli spinori si trasformano come (il
Peskin e Schroeder lo verificano velocemente):{

us(p⃗) = −iγ2
[
vs(p⃗)

]∗
vs(p⃗) = −iγ2

[
us(p⃗)

]∗ (2.3.2)

in cui possiamo notare che anche in questo caso entra in gioco l’operazione di
complessa coniugazione. Inserendo le trasformazioni degli spinori all’interno
dell’espressione della trasformazione dell’operatore di campo:

Cψ̂(x)C =

∫
d3p

(2π)3/2
1√
2Ep

∑
s

[
− iγ2b̂s(p⃗)

[
vs(p⃗)

]∗
e−ipx−

− iγ2â†s(p⃗)
[
us(p⃗)

]∗
e+ipx

]
= −iγ2ψ̂∗(x) = −iγ2

(
ψ̂†
)T

= −i
(
ψ̂γ0γ2

)T
. (2.3.3)

Quindi possiamo vedere che:

Cψ̂(x)C = −iγ2ψ̂∗(x) (2.3.4)

che ci mostra che la coniugazione di carica manda ψ in ψ∗, ma equivalente-
mente abbiamo:

Cψ̂(x)C = −i
(
ψ̂γ0γ2

)T
(2.3.5)

in cui dobbiamo stare attenti che la γ0 è presente solo nella relazione che
lega l’operazione di coniugazione di carica Cψ̂C con ψ.

Ovviamente, anche l’operatore di coniugazione di carica C è un’operatore
unitario.
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2.4 Sommario di C, P e T

Noi non le abbiamo viste, ma sul Peskin e Schroeder sono presenti tutte
le trasformazioni di tutte le forme bilineari che abbiamo visto per i cam-
pi spinoriali. Riassiumiamo in una tabella tali proprietà di trasformazione
(mettiamo anche l’operatore derivata e lasciamo fuori ovviamente l’identità
e lo spinore ψ, che abbiamo già visto):

ψψ iψγ5ψ ψγµψ ψγµγ5ψ ψσµνψ ∂µ

P +1 −1 (−1)µ −(−1)µ (−1)µ(−1)ν (−1)µ

T +1 −1 (−1)µ (−1)µ −(−1)µ(−1)ν −(−1)µ

C +1 +1 −1 +1 −1 +1

CPT +1 +1 −1 −1 +1 −1



Capitolo 3

Propagatori interagenti e teorie
perturbative

Questo capitolo è complementare al capitolo riguardo la teoria interagente
in QFT. Vedremo in particolare come applicare la teoria perturbativa, gli
sviluppi perturbativi della matrice S ed il teorema di Wick. Questo capitolo
è quasi totalmente governato dai diagrammi di Feynmann, che ci forniscono
una visione pittorica degli sviluppi perturbativi. I riferimenti per questa se-
zione sono la parte IV del Lancaster e Blundell [1] e il capitolo 4 del Peskin
e Schroeder [2].

Abbiamo imparato che le teorie quantistiche, ed in particolare la QFT,
sono particolarmente difficili da risolvere quando si è in presenza di inte-
razioni. Per questo ricorriamo alla teoria delle perturbazioni per ottenere
dei risultati approssimati e in cui i propagatori e i diagrammi di Feynmann
diventano gli strumenti fondamentali.

Abbiamo visto nel corso di Introduzione alla Teoria Quantistica dei Cam-
pi come sono fatti i propagatori sia in Meccanica Quantistica non relativistica
che in QFT, ed in particolare abbiamo visto come essi siano legati a funzioni
di Green. Utile tenere a mente sia i risultati ottenuti in MQ che quelli in
QFT.

3.1 Teoria perturbativa in Meccanica Quantistica

Nella maggior parte dei casi non siamo in grado, o non siamo interessati,
ad ottenere una soluzione esatta di un certo problema, per cui ripieghia-
mo sulla teoria delle perturbazioni. Generalmente abbiamo a che fare con
un’hamiltoniana del tipo:

H = H0 + V (3.1.1)

in cui H0 è il termine che sappiamo risolvere esattamente, ovvero il ca-
so libero, e V è il termine perturbativo (dunque vale V ≪ H0), che può

13
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rappresentare un’interazione1. Possiamo scrivere, utilizzando una notazione
simbolica (attenzione che non è una cosa molto rigorosa scrivere in questo
modo), l’equazione di Schrodinger:

H |ψ⟩ = E |ψ⟩ =⇒ (H − E) |ψ⟩ = 0 (3.1.2)

ma conoscendo la funzione di Green dell’operatore di Schrodinger possiamo
anche scrivere:

(H − E)G = −1 (3.1.3)

in cui facciamo attenzione che 1 rappresenta, in modo matriciale, la δ4.
Sempre facendo molta attenzione possiamo invertire l’equazione ed ottenere
il propagatore e trovare una serie perturbativa in termini del propagatore
libero:

G =
1

E −H
(3.1.4)

=
1

E −H0 − V
(3.1.5)

=
1

(E −H0)
(

1− V
E−H0

) (3.1.6)

∼ 1
E −H0

(
1 +

V

E −H0
+

V 2

(E −H0)2
+ . . .

)
(3.1.7)

=
1

E −H0
+

1
E −H0

V
1

E −H0
+

1
E −H0

V
1

E −H0
V

1
E −H0

+ . . .

(3.1.8)

e se riconosciamo che il propagatore libero è:

G0 =
1

E −H0
(3.1.9)

che possiamo rappresentare graficamente come una semplice linea che collega
due punti dello spazio tempo, chiamati vertici, e rappresenta la propagazione
di una particella libera da un punto iniziale ad uno finale. Vedi la figura 3.1.

L’equazione (3.1.8) diventa:

G = G0 +G0V G0 +G0V G0V G0 + . . . (3.1.10)

che è quello che va sotto il nome di equazione o serie di Dyson. La serie
(3.1.10) può essere rappresentata graficamente come mostrato in figura 3.2.

1Nota che non solo dev’essere una perturbazione a corto range, ma anche che avvenga
per un tempo molto piccolo essendo che nella teoria di Yukawa le interazioni sono rappre-
sentate dai propagatori e sappiamo bene che i propagatori rompono il mass-shell, ma che
in una teoria quantistica ciò si può fare solo per tempi brevi. Vedi la sezione §3.6 dedicata.
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H0

xi

xf

Figura 3.1: Rappresentazione pittorica del propagatore libero.

Figura 3.2: Rappresentazione pittorica della serie di Dyson.

Teniamo bene a mente che in tutto ciò l’unica parte risolvibile esatta-
mente è il termine di propagatore libero G0 con H0, mentre il pezzo con V è
quello che viene associato al processo di interazione, cioè allo scattering, che
altera o interrompe la propagazione. Chiamiamo:

G =
1

E −H0 − V
(3.1.11)

full propagator o propagatore d’interazione.
Notiamo che in figura 3.2 a sinistra dell’uguale la palla è piena, il che

significa che al suo interno mettiamo tutta l’informazione riguardo l’intera-
zione del sistema, mentre tutte le palle che si trovano a destra dell’uguale
sono vuote, proprio a significare che non contengono tutta l’informazione di
V , ma solamente una parte, ossia solo uno specifico termine dello sviluppo
perturbativo. Prendiamo ad esempio il terzo termine della figura, che cosa
ci sta dicendo? Semplice, ci dice che la particella si propaga liberamente
descritta da G0, incontra un’interazione V , continua la sua propagazione
con G0, riincontra V e infine se ne va liberamente con il propagatore libe-
ro. Quindi, l’interpretazione che diamo allo sviluppo (3.1.10) è il seguente:
l’ampiezza di probabilità che abbiamo che la particella si propaghi da un
punto iniziale ad un punto finale, ossia G, è data dalla sovrapposizione li-
neare dell’ampiezza che la particella si sposti liberamente dal punto iniziale
ad un punto intermedio, in cui incontra un’interazione, e che poi prosegua
liberamente (ovvero il termine G0V G0), più l’ampiezza di probabilità che la
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propagazione sia interrotta da due termini di interazione (G0V G0V G0), e
così via.

Dunque, l’algebra delle funzioni di Green ci permette, non solo di da-
re una descrizione visiva estremamente utile ed efficace del propagatore, in
termini di sviluppo perturbativo, ma anche di avere una immediata visua-
lizzazione del processo fisico.

Quello che abbiamo appena visto sta alla base di come verranno costruiti
i diagrammi di Feynmann.

3.2 La matrice S

Lo studio e l’utilizzo della matrice di scattering S ci permette di studiare teo-
rie interagenti, che non sono risolvibili esattamente, attraverso uno sviluppo
perturbativo. La teoria che studieremo si rifà molto alla teoria perturbativa
della MQ e ritroveremo lo sviluppo in serie di Dyson, ma sta volta in una
veste consona alla QFT.2

Partiamo, come al solito in una teoria interagente, con l’hamiltoniana del
sistema fatta come:

H = H0 +H ′ (3.2.1)

in cui H0 è l’hamiltoniana libera, indipendente dal tempo e che sappiamo
risolvere esattamente, mentre H ′ è l’hamiltoniana di interazione, eventual-
mente dipendente dal tempo e che agisce solo per un intervallo di tempo
limitato (e in una porzione spazialmente limitata). In un prototipo di un
esperimento di scattering iniziamo con particelle ben separate e non inte-
ragenti. Ad un certo punto spariamo le particelle l’una contro l’altra e le
facciamo interagire, anche in un modo complicato, ma sicuramente dall’Ha-
miltoniana del mondo reale H. Le particelle successivamente si allontane-
ranno l’una dall’altra e finiranno, nello stato finale per essere ben separate.
La prima cosa da dire su questo è che le complicate interazioni del mondo
reale rendono questo processo impossibile da analizzare. La seconda è che
la teoria perturbativa, insieme al fatto che consideriamo le particelle prima
dell’urto molto bene separate (quindi libere e governate da H0), permette di
fare i conti e risolvere il problema.

Il nostro problema è che se proviamo a lavorare nella rappresentazione
di Heisenbreg non possiamo nemmeno scrivere espressioni semplici per gli
operatori dipendendi dal tempo, figuriamoci calcolare un propagatore. La
strada che dobbiamo percorrere è quella di metterci in una situazione in cui
l’evoluzione temporale e la dipendenza da t non sono più un problema e
dopodiché sviluppare in serie gli oggetti che avremo per le mani.

2Segnalo il fatto che una trattazione della matrice Ŝ, dal punto di vista della MQ non
relativistica, la si può trovare nel Rossetti [3] nel capitolo XVII nelle sezioni che vanno
dalla 11 alla 13.
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Cominciamo ad immaginare un mondo senza interazioni complicate. Cioè,
cominciamo a considerare la parte di H, meno complicata, ossia H0 che de-
scrive un mondo semplice di particelle non interagenti, e lasciamo un secondo
H ′, che descrive le complicate interazioni, fuori dalla discussione. Definiamo
degli stati talmente lontani nel tempo che non vedono l’interazione e che
sono governati solo da H0 (motivo per cui non evolvono nel tempo):

|ψ⟩non int
in = |p1p2⟩in (3.2.2)

|ψ⟩non int
out = |q1q2⟩out (3.2.3)

in cui (3.2.2) sono gli autostati di H0 a t = −∞ e (3.2.3) gli autostati a
t = +∞. Possiamo a questo punto definire l’ampiezza di scattering del
processo come:

A = non int
out ⟨q1, q2| Ŝ |p1p2⟩non int

in (3.2.4)

in cui consideriamo gli stati iniziali e finali molto lontani dall’interazione,
quindi liberi, e mettiamo tutta l’informazione sull’hamiltoniana del mondo
reale H in Ŝ. Dunque, Ŝ gioca il ruolo di un operatore di evoluzione tempo-
rale (poiché contiene l’informazione dell’interazione) e ci dice come evolve il
sistema da un certo stato in in uno out.

Possiamo rappresentare graficamente tutto ciò che abbiamo detto grazie
alla figura 3.3.

Figura 3.3: Raffigurazione scattering di due particelle.

3.2.1 Definizione della matrice S

Ovviamente, come abbiamo già spoilerato, esiste un modo per sviluppare in
modo perturbativo l’espressione (3.2.4), ma per farlo abbiamo bisogno di rin-
frescare la memoria sul tipo di rappresentazione più conveniente da utilizzare
in QFT, ovvero la rappresentazione di interazione. Ho scritto l’Appendice
?? in proposito, quindi prima di continuare questo capitolo vai a ripassare
quella parte.

Chiaramente per poter sviluppare un oggetto prima dobbiamo definirlo
decentemente. Per poter definire la matrice S dobbiamo capire perché ab-
biamo detto che la rappresentazione di interazione è molto importante per
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la QFT. Il punto importante è che la parte di interazione dell’hamiltoniana
è zero all’inizio e alla fine del problema, visto che ci mettiamo in autostati di
H0, ovvero (3.2.2) e (3.2.3). Infatti, immaginiamo che la parte di interazio-
ne dell’hamiltoniana H ′ si accenda e si spenga lentamente e senza intoppi,
come raffigurato in figura 3.4. Ricordiamo che H ′ evolve nel tempo e la sua
evoluzione temporale la abbiamo chiamata HI . Quando HI = 0 (poiché
H ′ = 0) abbiamo solo la rappresentazione di Heisenberg per la parte libera
dell’hamiltoniana H0; proprio perché abbiamo autostati di H0, essi possia-
mo costruirli a partire dallo stato di vuoto |0⟩ applicando gli operatori di
creazione (o distruzione), il che ci viene particolarmente comodo e ci piace.

Figura 3.4: Rappresentazione funzionale di HI .

Possiamo dare una rappresentazione funzionale dell’hamiltoniana di in-
terazione come:

ĤI(t) = λ(t)Ĥ ′. (3.2.5)

Detto in altre parole, gli stati evolvono nel tempo solo durante il perio-
do in cui avviene l’interazione, cioè quando HI ̸= 0; al di fuori di questo
intervallo di tempo gli stati rimangono "congelati" (sono stati descritti con
Heisenberg, dunque non evolvono nel tempo se non con HI). Gli operato-
ri (come i campi ϕ) evolvono sempre solo con H0 (anche quando H ′ ̸= 0).
Dunque, ricordando l’equivalenza di tutte le rappresentazioni scriviamo:

A = non int
out ⟨q1, q2| Ŝ |p1p2⟩non int

in (3.2.6)

= out
real world ⟨ϕ| Ŝ |ψ⟩

in
real world (3.2.7)

= out
real world ⟨ϕ|ψ⟩

in
real world (3.2.8)

= ⟨ϕI(0)|ψI(0)⟩ (3.2.9)

= ⟨ϕI(+∞)| ÛI(+∞, 0)ÛI(0,−∞) |ψI(−∞)⟩ (3.2.10)

= ⟨ϕI(+∞)| ÛI(+∞,−∞) |ψI(−∞)⟩ (3.2.11)

= out
real world ⟨ϕ| ÛI(+∞,−∞) |ψ⟩inreal world (3.2.12)

dunque, deduciamo che:

Ŝ = ÛI(t,−t) , con t→ +∞ (3.2.13)
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ossia, Ŝ è l’operatore di evoluzione temporale, nella rappresentazione di
interazione, che lega gli istanti t = −∞ e t = +∞. Quando definiamo
S = UI(−∞,∞) è quello che di solito chiamiamo limite asintotico (o
limite adiabatico) dell’operatore di evoluzione.

3.2.2 Sviluppo perturbativo della matrice S

Discorsi riguardanti l’operatore di evoluzione temporale vengono fatti anche
nella sezione §??, conviene per completezza vedere anche quella. L’operatore
di evoluzione temporale, che per necessità di conservazione della probabilità
dev’essere unitario Û(t, t) = 1, sappiamo evolvere secondo l’equazione di
Schrodinger:3

i
d

dt2
Û(t2, t1) = ĤI Û(t2, t1). (3.2.16)

Però attenzione, ci sono due problemi non tanto banali. Il primo è che ĤI(t)
non è un semplice numero e non possiamo scrivere la soluzione di (3.2.16)
come:

e−i
∫ t2
t1

dtHI(t). (3.2.17)

Il secondo problema che abbiamo è che ĤI(t) non commuta con se stessa a
tempi diversi: [

ĤI(t1), ĤI(t2)
]
̸= 0 (3.2.18)

dipendendo dal tempo in modo non banale. La soluzione a questi nostri
problemi viene dall’introduzione dell’operatore di ordinamento temporale T ,
infatti, all’interno di un prodotto T-ordinato tutti gli operatori commutano,
così come succede con il normal ordering. Definiamo quindi:

ÛI(t2, t1) = T
[
e−i

∫ t2
t1

dtHI(t)
]

(3.2.19)

che va sotto il nome di sviluppo di Dyson dell’operatore di evoluzione tempo-
rale, nella rappresentazione di interazione. Se ora reintroduciamo la densità
hamiltoniana possiamo scrivere:

ĤI(t) =

∫
d3x ĤI(x⃗) =⇒

∫ +∞

−∞
dt ĤI(t) =

∫
d4x ĤI(x

µ) (3.2.20)

che messa insieme al ricordo che la matrice Ŝ è l’operatore Û(+∞,−∞),
allora possiamo ottenere:

Ŝ = T
[
e−i

∫
d4x ĤI(x)

]
(3.2.21)

3Facilmente dimostrabile mettendosi nella rappresentazione di interazione:

i
d

dt2
|ψI(t2)⟩ = ĤI |ψI(t2)⟩ =⇒ i

d

dt2
Û(t2, t1) |ψ(t1)⟩ = ĤI Û(t2, t1) |ψ(t1)⟩ (3.2.14)

=⇒ i
d

dt2
Û(t2, t1) = ĤI Û(t2, t1). (3.2.15)
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che va sotto il nome di sviluppo di Dyson della matrice S. L’espressione
(3.2.21) è una scrittura simbolica particolarmente bella esteticamente, ma
poco utile da punto di vista pratico. La relazione (3.2.21) diventa utile nel
momento in cui la sviluppiamo in serie (come per tutti gli operatori definiti
tramite esponenziali):

Ŝ = T
[
1− i

∫
d4z ĤI(z) +

(−i)2

2!

∫
d4y d4w ĤI(y)ĤI(w) + . . .

]
(3.2.22)

che però attenzione è uno sviluppo valido solamente quando il termine ĤI è
piccolo rispetto l’hamiltoniana totale Ĥ, e solo se ĤI(x) è non nulla solo su
un piccolo range.

Notiamo che nei termini in cui compare Ĥ più volte, abbiamo un integrale
sulle corrispondenti coordinate di ciascuna densità. Per questo, visto che ĤI

è un’interazione attiva solo su piccoli intervalli, è ragionevole pensare che i
termini con un numero elevato di ricorrenze di ĤI siano soppressi rispetto
ai termini in cui ĤI compare solo una volta, o due etc.

3.3 Teorema di Wick

Voglio riportare in questa sezione il teorema di Wick fatto in termini generici
usando il procedimento seguito dal Lancaster e Blundell [1], ma è identico a
quello fatto dal Peskin [2], per cui se si è già compresa la versione di [2] non
occorre leggerla.

Vediamo ora uno dei teoremi fondamentali che ci permettono di fare ef-
fettivamente i calcoli e ci permette di arrivare ai diagrammi di Feynmann.
Dal momento che gli stati iniziali e finali, nella rappresentazione di intera-
zione, sono autostati di H0, possono essere costruiti agendo con gli operatori
di creazione e distruzione sullo stato di vuoto |0⟩. Allora, per calcolare le
ampiezze di scattering non int

out ⟨ϕ|ψ⟩non int
in ci aspettiamo di dover calcolare, in

generale, oggetti del tipo:

⟨0|T [ÂB̂Ĉ . . . Ẑ] |0⟩ (3.3.1)

cioè, oggetti che sono valori di aspettazione sul vuoto del prodotto tempo-
ralmente ordinato di una catena di operatori (ÂB̂Ĉ . . . Ẑ), che non saranno
altro che operatori â e â†. Siamo certi di questo poiché in Ŝ è contenuta
l’interazione ĤI , che è data dal prodotto di campi, che possiamo individuare
dai diagrammi di Feynmann. Conti tipo (3.3.1) sono estremamente compli-
cati, ma il teorema di Wick ci viene in aiuto mettendo in relazione il VEV
(vacuum expectation value) del prodotto T-ordinato con quello del prodotto
normal ordered, il quale è più semplice da trattare in quanto è sempre nullo.4

4Ricorda che l’ordinamento normale pone gli operatori di annichilazione a destra e gli
operatori di creazione a sinistra, e quindi questo VEV è identicamente zero poché â |0⟩ = 0.
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Prima di enunciare il teorema dobbiamo capire di cosa si occupa e che
oggetti utilizza. Per prima cosa rendiamoci conto che possiamo espandere
un qualsiasi operatore di campo nella sua parte di creazione e di distruzione:

ϕ̂ = ϕ̂− + ϕ̂+ , ϕ̂− |0⟩ = 0 ⟨0| ϕ̂+ = 0 (3.3.2)

in cui:

ϕ̂† =

∫
d3k

(2π)3/2
√
2Ek

â†k e
+ikx (3.3.3)

ϕ̂ =

∫
d3k

(2π)3/2
√
2Ek

âk e
−ikx (3.3.4)

Il teorema di Wick utilizza delle quantità che chiamiamo contrazioni, per
capire cosa sono facciamo un esempio. Prendiamo due operatori di campo,
che chiamiamo Â e B̂, e facciamone il prodotto:

ÂB̂ =
(
Â+ + Â−

)(
B̂+ + B̂−

)
= Â+B̂++Â−B̂−+Â+B̂−+Â−B̂+ (3.3.5)

e possiamo anche calcolare il prodotto normal-oredered dei due operatori:

N [ÂB̂] = Â+B̂+ + Â−B̂− + Â+B̂− + B̂+Â−. (3.3.6)

Possiamo facilmente notare che l’unica differenza tra (3.3.5) e (3.3.6) è solo
l’ordine degli ultimi due operatori nella somma, per questo motivo la loro
differenza da:

ÂB̂ −N [ÂB̂] =
[
Â−, B̂+

]
. (3.3.7)

Però, presi due campi Â(x) e B̂(y), noi possiamo sempre scriverci il loro
prodotto T-ordinato:

T [Â(x)B̂(y)] =

{
Â(x)B̂(y) x0 > y0

B̂(y)Â(x) x0 < y0
(3.3.8)

e possiamo notare la quantità:

T [Â(x)B̂(y)]−N [Â(x)B̂(y)] =

{
[Â−(x), B̂+(y)] x0 > y0

[B̂−(y), Â+(x)] x0 < y0.
(3.3.9)

Il punto del discorso è che il valore di aspettazione sul vuoto di (3.3.9) si
riduce semplicemente al valore di aspettazione del prodotto T-ordinato, visto
che il VEV di un prodotto normal-ordered è nullo, dunque, possiamo scrivere
in modo del tutto generale (e soprattutto giustificato):

⟨0|
(
T [Â(x)B̂(y)]−N [Â(x)B̂(y)]

)
|0⟩ = ⟨0|T [Â(x)B̂(y)] |0⟩

=

{
⟨0| [Â−(x), B̂+(y)] |0⟩ x0 > y0

⟨0| [B̂−(y), Â+(x)] |0⟩ x0 < y0.
(3.3.10)
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Possiamo definire, in modo generico, la quantità (3.3.9) come una con-
trazione, che indichiamo con:

ÂB̂ = T [ÂB̂]−N [ÂB̂] (3.3.11)

che è semplicemente un numero (in realtà un c-numero), dal momento che
con la relazione (3.3.9) abbiamo visto essere semplicemente un commutatore,
che avendo a che fare solo con operatori di creazione e distruzione è al più
una δ di Kroneker5. Possiamo scrivere:

ÂB̂ = ÂB̂ ⟨0|0⟩ = ⟨0| ÂB̂ |0⟩ = ⟨0|T [ÂB̂] |0⟩ . (3.3.12)

Utilizzando la relazione (3.3.11) possiamo scrivere:

T [ÂB̂] = N [ÂB̂] + ÂB̂ = N [ÂB̂ + ÂB̂] (3.3.13)

che è una versione a due operatori del teorema di Wick. Possiamo enunciare:

Teorema 1 (di Wick) Vale, per una generica stringa di operatori, la rela-
zione:

T [ÂB̂Ĉ . . . Ẑ] = N [ÂB̂Ĉ . . . Ẑ] +N [ÂB̂Ĉ . . . Ẑ + . . . ] (3.3.14)

= N
[
ÂB̂Ĉ . . . Ẑ +

tutte le possibili
contrazioni di ÂB̂Ĉ . . . Ẑ

]
. (3.3.15)

Dalla relazione (3.3.15) cominciamo già a vedere che se facciamo il va-
lore di aspettazione sul vuoto del prodotto T-ordinato, allora sopravvivono
solo i termini con tutti i campo contratti (in tutti i modi possibili), poiché
altrimenti avremmo i valori di aspettazione di una cosa tipo:

N [ÂB̂ĈD̂] = ÂB̂ N [ĈD̂] (3.3.16)

e come sappiamo il valore di aspettazione di un prodotto normal-oredered da
zero. Conseguenza di ciò è che sono non nulli solamente i VEV dei prodotti
T-ordinati di un numero pari di operatori.

Proviamo a vedere l’applicazione del teorema di Wick per 4 campi:

T [ÂB̂ĈD̂] = N [ÂB̂ĈD̂] +N [ÂB̂ĈD̂] +N [ÂB̂ĈD̂] +N [ÂB̂ĈD̂]+

+N [ÂB̂ĈD̂] +N [ÂB̂ĈD̂] +N [ÂB̂ĈD̂] +N [ÂB̂ĈD̂]+

+N [ÂB̂ĈD̂] +N [ÂB̂ĈD̂] (3.3.17)
5Abbiamo a che fare solo con â e â† (o quelli di antiparticella) perché in una teoria libera

abbiamo ϕ solo in funzione di essi, ma anche in una interagente quando facciamo il limite
adiabatico (andiamo a istanti di tempo molto distanti dalla regione di interazione) siamo
comunque in presenza di campi non interagenti, quindi solo con operatori di creazione e
distruzione.
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calcoliamo il valore di aspettazione sul vuoto:

⟨0|T [ÂB̂ĈD̂] |0⟩ = ⟨0|N [ÂB̂ĈD̂] |0⟩+

+ ⟨0|N [ÂB̂ĈD̂] |0⟩+ ⟨0|N [ÂB̂ĈD̂] |0⟩ (3.3.18)

utilizzando la definizione di contrazione (3.3.11):

⟨0|T [ÂB̂ĈD̂] |0⟩ = ⟨0|T [ÂB̂ĈD̂] |0⟩+

+ ⟨0|T [ÂB̂ĈD̂] |0⟩+ ⟨0|T [ÂB̂ĈD̂] |0⟩ (3.3.19)

che possiamo anche riscrivere, utilizzando il teorema di Wick, come:

⟨0|T [ÂB̂ĈD̂] |0⟩ = ⟨0|T [ÂB̂] |0⟩ ⟨0|T [ĈD̂] |0⟩+
+ ⟨0|T [ÂĈ] |0⟩ ⟨0|T [B̂D̂] |0⟩+ ⟨0|T [ÂD̂] |0⟩ ⟨0|T [B̂Ĉ] |0⟩ . (3.3.20)

Possiamo notare una cosa molto interessante, se al posto di predere 4 ope-
ratori generici, prendiamo 4 campi scalari ϕ̂ allora otteniamo:

⟨0|T [ϕ̂(x)ϕ̂(y)ϕ̂(z)ϕ̂(w)] |0⟩ = ⟨0|T [ϕ̂(x)ϕ̂(y)] |0⟩ ⟨0|T [ϕ̂(z)ϕ̂(w)] |0⟩+
+ ⟨0|T [ϕ̂(x)ϕ̂(z)] |0⟩ ⟨0|T [ϕ̂(y)ϕ̂(w)] |0⟩+

+ ⟨0|T [ϕ̂(x)ϕ̂(w)] |0⟩ ⟨0|T [ϕ̂(y)ϕ̂(z)] |0⟩ (3.3.21)

che, ricordando le definizioni di propagatore di Feynmann per campo scalare
(neutro), diventa:

⟨0|T [ϕ̂(x)ϕ̂(y)ϕ̂(z)ϕ̂(w)] |0⟩ = ∆(x− y)∆(z − w)+
+∆(x− z)∆(y − w) + ∆(x− w)∆(y − z) (3.3.22)

in cui vediamo bene che tutto il formalismo che stimao analizzando tramite
il teorema costruisce in automoatico un qualcosa di quantistico, poiché dan-
do come risultati dei propagatori, ci sta semplicemente dicendo che il nostro
sistema si propaga in tutti i modi possibili, essendo una combinazione lineare
di tutti i possibili propagatori.

Per concludere possiamo scrivere l’espressione del teorema di Wick in
modo più generico possibile per una stringa arbitraria di operatori:

⟨0|T [ÂB̂Ĉ . . . Ẑ] |0⟩ = ⟨0|T [ÂB̂] |0⟩ ⟨0|T [ĈD̂] |0⟩ . . . ⟨0|T [Ŷ Ẑ] |0⟩+
+ ⟨0|T [ÂĈ] |0⟩ ⟨0|T [B̂D̂] |0⟩ . . . ⟨0|T [Ŷ Ẑ] |0⟩+

+ tutte le possibili combinazioni. (3.3.23)

che detto a parole è: il valore di aspettazione sul vuoto di un prodotto di
n operatori è dato dalla somma dei prodotti dei VEV di tutti i possibili
prodotti T-ordinati di coppie di operatori.
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3.4 Diagrammi di Feynmann

Come avremo modo di verificare, il teorema di Wick, che abbiamo studiato,
sarà uno strumento essenziale, non solo per espandere la matrice Ŝ nella
teoria delle perturbazioni, ma anche, di conseguenza, nella formulazione e
studio dei diagrammi di Feynmann.

Uno dei più grandi successi di Richard Feynman fu la sua invenzione di
(quelli che ora vengono chiamati) diagrammi di Feynman. Si tratta di di-
segni che rappresentano i termini nell’espansione perturbativa della matrice
Ŝ. Avremo modo di vedere, che i diagrammi di Feynman esistono in diverse
forme correlate, ma le più semplici di queste sono semplicemente diagrammi
dello spazio-tempo che descrivono la traiettoria6 delle particelle. Immaginia-
mo di mettere l’asse del tempo verso in alto e rappresentiamo le particelle
mediante linee con una freccia che va nella direzione del tempo, mentre le
antiparticelle sono rappresentate da linee con frecce che vanno nella direzione
opposta, ossia, indietro nel tempo. Possiamo guardare la figura 3.5.

= particella = antiparticella

Figura 3.5

Possiamo disegnare coppie di particelle e antiparticelle create in un dato
momento o distrutto in un altro momento. Vedi la figura 3.6.

t

t1

t2

Figura 3.6

Le cose ovviamente le possiamo complicare a piacere, ad esempio, nella
figura 3.7 arriviamo con una particella, in un certo istante t1 creiamo una

6Ricorda sempre che parlare di traiettorie in teorie quantistiche è un po’ rischioso,
quello che intendiamo dire qua è che possiamo pensare alle linee dei diagrammi come le
evoluzioni temporali delle particelle, ma comunque resta valido il fatto che non conosiamo
una legge oraria x⃗(t) in senso classico.
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coppia particella-antiparticella ed in un’istante successivo t2 la prima par-
ticella viene annichilita dall’antiparticella ed in un’uscita abbiamo solo la
seconda particella.

t

t1

t2

Figura 3.7

Come abbiamo già detto le interazioni tra le particelle le descriviamo
tramite lo sviluppo di Dyson della matrice di scattering Ŝ, ovvero:

Ŝ = T
[
e−i

∫
d4zHI(z)

]
(3.4.1)

in cui è vero che compare HI(z) che rappresenta l’interazione in un punto z
preciso dello spazio-tempo, ma è altrettanto vero che è integrata in d4z, dun-
que l’ampiezza in realtà tiene conto del fatto che l’interazione possa avvenire
in qualunque punto dello spazio e del tempo.

Tutto questo è molto bello, ma non abbiamo detto nulla sostanzialmente,
abbiamo solo fatto dei disegni molto poco giustificati; vediamo un esempio
specifico, che in realtà non rappresenta una vera e propria teoria fisica, ma è
un ottimo allenamento, per capire che cosa Feynmann abbia effettivamente
inventato.

3.5 Teoria ϕ̂4

Eseguiremo ora l’intera procedura di calcolo di un elemento di matrice Ŝ per
il caso semplice della teoria ϕ̂4 (poiché come vedremo in un corso successivo,
sarà una delle poche teorie rinormalizzabili, infatti, si potrebbe pensare che
la teoria ϕ̂3 sia più semplice, ma in realtà è una teoria che ha energie non
definite positive, a meno che non consideriamo anche potenze più alte di
ϕ̂)7. Il punto è che quando mettiamo delle combinazioni dei campi in L,
solamente poche combinazioni ci descrivono delle teorie fisiche e sensate,
mentre molte altre ci danno delle teorie non normalizzabili o con uno spettro

7Anche considerare potenze più grandi però non è molto semplice, poiché è facile che la
teoria non sia rinormalizzabile, vedi ϕ̂6, e quindi sia senza potere predittivo. Ovviamente
discorsi analoghi a quelli fatti per ϕ si possono fare per i campi spinoriali.
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energetico non limitato inferiormente. Le teorie normalizzabili sono quelle
che contengono all’interno di L una costante di accoppiamento (del termine
di interazione) adimensionale.8

La densità lagrangiana che descrive la teoria interagente ϕ̂4 è data da:

L =
1

2
[∂µϕ(x)]

2 − m

2
ϕ2(x)− λ

4!
ϕ4(x) (3.5.1)

in cui λ è un termine di accoppiamento, su cui faremo il nostro sviluppo
della matrice Ŝ. La cui parte libera di L è:

L0 =
1

2
[∂µϕ(x)]

2 − m

2
ϕ2(x) (3.5.2)

che ci da, tramite la quantizzazione canonica, la densità hamiltoniana libera:

Ĥ0 =
1

2

(∂ϕ̂
∂t

)2

+
(
∇⃗ϕ̂
)2

+m2ϕ̂2

 . (3.5.3)

La parte di L interagente è chiaramente:

LI = − λ
4!
ϕ4(x) (3.5.4)

che ci da la densità hamiltoniana:

ĤI(z) =
λ

4!
ϕ̂4(z). (3.5.5)

L’interazione è data dall’incontro di 4 campi scalari in un punto dello
spazio tempo z. Il diagramma lo possiamo disegnare come 4 linee (sen-
za freccia perché possono descrivere sia particelle che antiparticelle essendo
campi scalari) che si incontrano in un punto, come mostrato in figura 3.8.

Figura 3.8: Rappresentazione vertice della teoria ϕ4(z).

Per calcolare lo sviluppo di Dyson della matrice Ŝ procediamo per passi
successivi. Uno schema di quello che andremo a fare è in figura 3.9.

8Nota non solo che in generale i pezzi che mettiamo in L hanno dimensioni L−4 (ad
esempio m2ϕ2 ha dimensioni L−4), ma anche che questo è il caso dell’interazione ϕ̂4, che
avendo dimensione L−4 ci permette di dire che λ è adimensionale.
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Figura 3.9: Schema del processo per derivare le regole di Feynmann.

Prima di cominciare la nostra ricetta per trovare l’ampiezza di transizio-
ne facciamo un appunto. Noi non discuteremo mai il conto effettivo degli
integrali che troveremo. Questo non per via della semplicità o banalità di
conto, ma perché molto spesso integrali tipo quelli che troveremo divergono
e danno luogo ad infiniti non banali9, e per i quali sarà necessario studiare
la teoria delle rinormalizzazioni (non oggetto di questo corso).

1. Innanzitutto decidiamo che cosa vogliamo studiare e scriviamo l’espres-
sione di ampiezza di probabilità. Prendiamo il caso di particella libera, per
cui:

A = real world
out ⟨q|p⟩real world

in =non int
out ⟨q| Ŝ |p⟩non int

in (3.5.6)

= (2π)3
√

2Ep

√
2Eq ⟨0| âqŜâ†p |0⟩ (3.5.7)

in cui abbiamo fissato le normalizzazioni degli stati arbitrariamente utiliz-
zando i termini di normalizzazione degli operatori di creazione e distruzione.

9Questa era l’argomentazione, a suo tempo, di Dirac per portare avanti la sua idea
che la Teoria Quantistica dei Campi non sarebbe stata la ricercata "teoria del tutto".
Da notare anche che inizialmente Dirac formulò per primo la QFT e successivamente fù
lui stesso ad andarci conto quando la QED (dopo Feynmann etc.) diede i primi risultati
sperimentali soddisfacenti.



28 CAPITOLO 3. Propagatori interagenti e teorie perturbative

2. Possiamo espandere la matrice Ŝ come ci dice il teorema di Wick ed
inserire la nostra forma di ĤI :

Ŝ = T
[
e−i

∫
d4x ĤI(x)

]
(3.5.8)

= T
[
1− i

∫
d4z ĤI(z) +

(−i)2

2!

∫
d4y d4w ĤI(y)ĤI(w) + . . .

]
(3.5.9)

= T
[
1− i λ

4!

∫
d4z ϕ̂4(z) +

(−i)2

2!

(
λ

4!

)2 ∫
d4y d4w ϕ̂4(y)ϕ̂4(w) + . . .

]
.

(3.5.10)

3. Possiamo inserire lo sviluppo (3.5.10) all’interno dell’espressione (3.5.7):

A = (2π)3
√

2Ep

√
2Eq ⟨0| âqŜâ†p |0⟩ (3.5.11)

A = T
[
⟨0| âq1â†p |0⟩ − i

λ

4!

∫
d4z ⟨0| âqϕ̂4(z)â†p |0⟩+

+
(−i)2

2!

(
λ

4!

)2 ∫
d4y d4w ⟨0| âqϕ̂4(y)â†p |0⟩ ⟨0| âqϕ̂4(w)â†p |0⟩+ . . .

]
.

(3.5.12)

L’espressione (3.5.12) la possiamo anche vedere come:

A = A0 +A1 +A2 + . . . (3.5.13)

in cui ogni termineAi dello sviluppo è legato ad una potenza di λ, ad esempio
A0 ∝ λ0 oppure A2 ∝ λ2.

4. Utilizziamo i teorema di Wick per calcolarci i prodotti T-ordinati che
compaiono in 3.5.12, che sono termini del tipo ⟨0| âqϕ̂4â†p |0⟩ e che saranno
espressi in termini di contrazioni.

5. Disegnare i diagrammi di Feynmann relativi a tutti gli ordini a cui siamo
interessati. Ciascun diagramma rappresenterà una tipologia di termini nello
sviluppo di Dyson di Ŝ.

Ovviamente, la parte complicata dei 5 punti elencati è il quarto e per
semplicità possiamo trattere un termine per volta dello sviluppo (3.5.12).
Cominciamo a trattare il primo termine non banale, ossia il primo ordine:

⟨0| âqϕ̂4(z)â†p |0⟩ = ⟨0| âqϕ̂(z)ϕ̂(z)ϕ̂(z)ϕ̂(z)â†p |0⟩ (3.5.14)
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in cui ci rendiamo presto conto che esistono solo due tipi di contrazioni che
possiamo fare:

⟨0| âqϕ̂ϕ̂ϕ̂ϕ̂â†p |0⟩ (3.5.15)

⟨0| âqϕ̂ϕ̂ϕ̂ϕ̂â†p |0⟩ (3.5.16)

analizziamone uno per volta e vediamo come possiamo rappresentarli nei
diagrammi di Feynmann.

In (3.5.15) stiamo contraendo gli operatori di creazione e distruzione e gli
operatori ϕ̂ separatamente ognuno per conto proprio. Ovviamente ci sono 3
tipi di contrazioni di questo tipo del tutto analoghe di significato, ovvero (a
costo di risultar pedante le riporto, ma solo per questa teoria):

⟨0| âqϕ̂ϕ̂ϕ̂ϕ̂â†p |0⟩ (3.5.17)

⟨0| âqϕ̂ϕ̂ϕ̂ϕ̂â†p |0⟩ (3.5.18)

⟨0| âqϕ̂ϕ̂ϕ̂ϕ̂â†p |0⟩ (3.5.19)

questo fatto tornerà dopo, per ora teniamo a mente che c’è una certa molte-
plicità. Il teorema di Wick mi permette di riscrivere le contrazioni (3.5.15)
in termini di prodotti T-ordinati:

⟨0| âqϕ̂ϕ̂ϕ̂ϕ̂â†p |0⟩ = ⟨0| âqâ†p |0⟩ ⟨0|T [ϕ̂(z)ϕ̂(z)] |0⟩ ⟨0|T [ϕ̂(z)ϕ̂(z)] |0⟩
(3.5.20)

in cui non abbiamo messo il prodotto T-ordinato per gli operatori âqâ
†
p poiché

distruggono e creano particelle a t = −∞ e t = +∞ rispettivamente, per cui
il tempo è ben ordinato.

Ora viene la parte leggermente complicata, perché dobbiamo interpreta-
re i termini T-ordinati della moltiplicazione (3.5.20) nei diagrammi di Feyn-
mann. Un riassunto grafico di quello che stiamo per vedere è in figura 3.10.
Vediamo che abbiamo:

⟨0| âqâ†p |0⟩ = ⟨q|p⟩ = δ3(q⃗ − p⃗) (3.5.21)

rappresenta la conservazione dell’impulso e possiamo rappresentarla come
una linea dritta senza vertice, non dipendendo da z.

Allo stesso tempo però vediamo che le contrazioni dei campi scalari ϕ̂ non
sono altro che due propagatori liberi, che rappresentano appunto una pro-
pagazione da un punzo z fino allo stesso punto z. Dunque, sono termini che
possiamo rappresentare come delle curve che iniziano e finiscono nello stesso
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punto. Questi termini, secondo i diagrammi di Feynmann, vengono anche
chiamati diagrammi di vuoto e contribuiscono all’ampiezza di transizione
solo con una fase overall eiϕ, per cui non hanno effetto. termini di questo
tipo non sono influenti poiché non sono connessi con particelle entranti o
uscenti.

Figura 3.10: Rappresentazione prima possibile contrazione del primo ordi-
ne dello sviluppo della teoria ϕ4(z).

Questo tipo di diagrammi, formati da due diagrammi separati, si chia-
mano disconnesso e sono termini poco interessanti dal punto di vista fisico,
proprio perché sono due pezzi separati e non possono influenzarsi a vicenda.

Analizziamo ora la seconda possibilità di contrazioni che possiamo fare,
ossia (3.5.16), di cui possiamo notare esistere 12 modi per realizzarla. Usando
il teorema di Wick (3.5.16) diventa:

⟨0| âqϕ̂ϕ̂ϕ̂ϕ̂â†p |0⟩ = ⟨0| âqϕ̂(z) |0⟩ ⟨0|T [ϕ̂(z)ϕ̂(z)] |0⟩ ⟨0| ϕ̂(z)â†p |0⟩ . (3.5.22)

In questo caso le interpretazioni sono leggermente più complicate da vedere.
Sicuramente riconosciamo un termine identico al primo caso che abbiamo
analizzato, ossi il propagatore da z in z, ma i termini nuovi, e interessanti
del prodotto sono il primo e il terzo. Vediamo il primo termine:10

⟨0| âqϕ̂(z) |0⟩ = ⟨0| âq
∫

d3k

(2π)3/2
1√
2Ek

e+ikz |q⃗⟩ = 1√
2Eq

e+iqz (3.5.23)

dunque è un termine che possiamo interpretare come una particella (ricorda
che stiamo parlando di campo scalare) uscente dal punto z, la cui infor-
mazione è data dal campo ϕ̂, con impulso q⃗, la cui informazione è portata
dall’operatore âp. Il terzo termine delle contrazioni lo analizziamo alla stessa
maniera e vediamo che:

⟨0| ϕ̂(z)â†p |0⟩ = ⟨0| ϕ̂(z) |p⃗⟩ =
1

(2π)3/2
1√
2Ep

e−ipz (3.5.24)

10Utilizziamo l’espressione esplicita del campo scalare e ricordiamo la sua azione sul
vuoto.
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dunque, questo è un termine interpretabile come una particella entrante nel
punto z con un impulso p⃗. Questi discorsi sono rappresentati nei diagrammi
di Feynmann di figura 3.11.

Figura 3.11: Rappresentazione seconda possibile contrazione del primo
ordine dello sviluppo della teoria ϕ4(z).

Questo secondo tipo di diagrammi non è disconnesso, si dice di contatto,
e ha significato fisico.

Facciamo un bel riassunto di quello che abbiamo imparato. Abbiamo
visto che possiamo scrivere per il primo ordine di (3.5.12):

A1 = −i
λ

4!

∫
d4z

[
3 ⟨0| âqâ†p |0⟩ ⟨0|T [ϕ̂(z)ϕ̂(z)] |0⟩ ⟨0|T [ϕ̂(z)ϕ̂(z)] |0⟩+

+ 12 ⟨0| âqϕ̂(z) |0⟩ ⟨0|T [ϕ̂(z)ϕ̂(z)] |0⟩ ⟨0| ϕ̂(z)â†p |0⟩
]

(3.5.25)

in cui abbbiamo tenuto conto della molteplicità di ciascun termine. Grazie
ai diagrammi di Feynmann abbiamo visto che da A1 riceviamo due tipi
di contributi, uno dai diagrammi disconnessi (che sono 3), che non hanno
senso fisico, e l’altro dai diagrammi connessi (sono 12) che sono la parte
interessante. Rigurado la relazione tra lo sviluppo di Ŝ e i diagrammi di
Feynmann abbiamo imparato:

• In ogni diagramma ci sono un certo numero di punti in cui avvengo-
no le interazioni, in particolare questi punti sono detti vertici e sono
proprio il punto in cui le linee si uniscono. Una cosa importante da
tenere a mente è che in ogni diagramma compaiono tanti vertici quanto
è l’ordine perturbativo che stiamo considerando. In più, quando dise-
gnamo un diagramma, inseriamo un termine (−iλ) per ogni vertice,
detto coupling.

• In ogni vertice entrano, o escono, tante linee quanti sono i campi che
compaiono nell’hamiltoniana ĤI della nostra teoria. In questo caso
abbiamo 4 gambe che convergono in ogni vertice (rivedi la figura 3.8).
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• Il termine ˆϕ(z)â†p rappresenta un linea entrante nel vertice di interazio-

ne, mentre il termine âp ˆϕ(†)(z) rappresenta una linea uscente. Ovvia-
mente queste linee entranti ed uscenti, che chiamiamo linee esterne,
come abbiamo visto, rappresentano delle particelle (o antiparticelle)
on-shell che entrano ed escono dal processo. Queste linee hanno un
estremo che non è attaccato a nulla, il che rappresenta la connessio-
ne con il mondo esterno. Notiamo che avendo scelto una convenzione
per l’asse temporale disegnamo le linee entranti al di sotto dei vertici,
mentre le linee uscenti al di sopra.

• Le contrazioni tra gli operatori di creazione e distruzione âqâ†p rappre-
sentano semplicemente delle δ3 di conservazione.

• Le contrazioni tra due campi ˆϕ(x)ϕ̂(y) = ⟨0|T [ϕ̂(x)ϕ̂(y)] |0⟩ rappresen-
ta un propagatore che connette i punti spazio temporali x e y, il quale
corrisponde ad una linea che connette due vertici, che viene spesso
chiamata linea interna e rappresenta particelle virtuali. Nel nostro
caso il propagatore era un loop che connetteva z con se stesso.

3.5.1 Regole di Feynmann nello spazio delle configurazioni
per la teoria ϕ̂4

Fino ad ora i diagrammi di Feynmann non hanno rappresentato una semplifi-
cazione nei nostri conti, anzi, oltre a dover implementare i conti espliciti dello
sviluppo perturbativo ci siamo messi pure a disegnarli. In realtà, ovviamente,
sono molto utili e utilizzati, proprio perché una volta capito il funzionamento
di una teoria e a che disegno associare ciascun prodotto T-ordinato dello svi-
luppo perturbativo di Ŝ, allora semplicemente guardando un diagramma di
Feynamnn, e senza scrivere null’altro riguardo l’espansione, siamo in grado
di scrivere l’espressione dello specifico termine perturbativo rappresentato.
Ad esempio, arriva un nostro collega e ci porta il quarto diagramma della
figura 3.11, a quel punto noi solamente guardandolo, e ricordando quello che
abbiamo capito della teoria ϕ4, siamo in grado di scrivere:

A1 ∝ −iλ
∫

d4z ⟨0| âqϕ̂(z) |0⟩ ⟨0|T [ϕ̂(z)ϕ̂(z)] |0⟩ ⟨0| ϕ̂(z)â†p |0⟩ = (3.5.26)

= −iλ
∫

d4z
1√
2Eq

e+iqz∆(z − z) 1

(2π)3/2
1√
2Ep

e−ipz (3.5.27)

=
1

(2π)3
1√
2Ep

1√
2Eq

∫
d4z e+i(q−p)z

∫
d4k

(2π)4
i

k2 −m2 + iϵ
(3.5.28)

=
1

(2π)3
1√
2Ep

1√
2Eq

∫
d4z

d4k

(2π)4
ie+i(q−p)z

k2 −m2 + iϵ
(3.5.29)
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Per poter automatizzare questo procedimento dobbiamo scrivere alcune
regole, che saranno valide ad ogni ordine, ma solamente per una specifica
teoria, infatti per ogni interazione saremo in grado di scrivere le relative
regola di Feynmann. Le regole per ϕ̂4 sono:

• Ad ogni vertice associamo un termine (−iλ), così che in base al numero
di vertici, che sono collegati con l’ordine perturbativo, ricostruiamo la
corretta potenza di λ.

• Ad ogni linea interna associamo un propagatore ∆(x− y).

• Ad ogni linea esterna associamo un termine e±ipx a seconda che sia
uscente o entrante.

• Integrare su tutte le possibili posizioni dei vertici dello spaziotempo.

• Dobbiamo anche diviere ciascun termine per il fattore di simmetria11,
che chiamiamo D, in modo da ottenere il giusto coefficiente davanti a
ciascun termine.

Infatti, se riprendiamo l’espressione (3.5.29) che avevamo scritto senza
troppi pensieri e consideriamo tutte le regole, dunque inseriamo anche il fat-
tore di simmetria (12), il termine di coupling e mettiamo le normalizzazioni
degli stati ad impulso fissato che avevamo scelto in (3.5.11), allora otteniamo
il corretto termine:

A1 = 12(2π)3
√

2Ep

√
2Eq

(−iλ)
4!

1

(2π)3
1√
2Ep

1√
2Eq

∫
d4z

d4k

(2π)4
ie+i(q−p)z

k2 −m2 + iϵ

(3.5.30)

= −iλ
2

∫
d4z

d4k

(2π)4
ie+i(q−p)z

k2 −m2 + iϵ
. (3.5.31)

3.5.2 Diagrammi di Feynmann nello spazio degli impulsi per
la teoria ϕ̂4

Già dall’espressione (3.5.31) ci possiamo rendere conto che, essendo due inte-
grali, uno sullo spazio e uno sugli impulsi, potrebbe essere comodo toglierne
uno dei due. Infatti, i calcoli risultano molto più semplici nello spazio degli
impulsi. Vediamo questa semplicità attraverso un’esempio. Consideriamo il
secondo ordine della teoria ϕ̂4 i cui possibili diagrammi sono in figura 3.12.

Quello interessante fisicamente e che vogliamo studiare è (f) e si chiama
diagramma di saturno. Possiamo applicare le regole di Feynmann che

11Puoi vedere come calcolare i fattori di simmetria al capitolo 19.4 del Lancaster e
Blundell [1].
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Figura 3.12: Rappresentazione tutti i possibili diagrammi del secondo or-
dine della teoria ϕ4(z).

abbiamo elencato in precedenza e ottenere (con un fattore di simmetria D =
6):

A(S)
2 =(2π)3

√
2Ep

√
2Eq

(−iλ)2

D

∫
d4y d4w× (3.5.32)

× ⟨0| âqϕ̂(y)ϕ̂(y)ϕ̂(y)ϕ̂(y)ϕ̂(w)ϕ̂(w)ϕ̂(w)â†pϕ̂(y) |0⟩ (3.5.33)

=− λ

6

∫
d4y d4w e+iqy∆(y − w)∆(y − w)∆(y − w)e−ipw (3.5.34)

ricordando l’espressione del propagatore di Feynmann causale neutro abbia-
mo:

A
(S)
2 = −λ

6

∫
d4k1
(2π)4

d4k2
(2π)4

d4k3
(2π)4

i

k21 −m2 + iϵ

i

k22 −m2 + iϵ

i

k23 −m2 + iϵ
×

×
∫

d4y d4w e+iqye−ipwe−ik1(y−w)e−ik2(y−w)e−ik3(y−w) (3.5.35)

A
(S)
2 = −λ

6

∫
d4k1
(2π)4

d4k2
(2π)4

d4k3
(2π)4

i

k21 −m2 + iϵ

i

k22 −m2 + iϵ

i

k23 −m2 + iϵ
×

×
∫

d4y d4w e+iqye−ipwe−i(k1+k2+k3)ye+i(k1+k2+k3)w (3.5.36)
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possiamo notare che gli integrali su y e w sono proprio le rappresentazioni
integrali della δ:∫

d4y e−i(k1+k2+k3)y = (2π)4δ4(p− k1 − k2 − k3) (3.5.37)∫
d4w ei(k1+k2+k3)w = (2π)4δ4(q − (−k1 − k2 − k3)) = (2π)4δ4(q + k1 + k2 + k3)

(3.5.38)

allora otteniamo:

A
(S)
2 = −λ

6

∫
d4k1
(2π)4

d4k2
(2π)4

d4k3
(2π)4

i

k21 −m2 + iϵ

i

k22 −m2 + iϵ

i

k23 −m2 + iϵ
×

× (2π)4δ4(p− k1 − k2 − k3)(2π)4δ4(q + k1 + k2 + k3). (3.5.39)

Le δ che compaiono in (3.5.39) ci dicono che in ogni vertice tutti i momenti
si sommano a 0, dunque se abbiamo una particella in ingresso con impulso
p e in uscita con impulso q, allora non solo possiamo dire che in ogni ver-
tice l’impulso si conserva, ma anche globalmente. Le due delta le possiamo
scrivere insieme come δ(q− p), ma solo dopo averne usata una per riscrivere
k1 = q − k2 − k3 e fare l’integrale d4k1. Abbiamo in questo modo:

A
(S)
2 = −λ

6
(2π)4δ4(q − p)

∫
d4k2
(2π)4

d4k3
(2π)4

i

(q − k2 − k3)2 −m2 + iϵ
×

× i

k22 −m2 + iϵ

i

k23 −m2 + iϵ
. (3.5.40)

Sebbene in (3.5.40) il numero di integrali da fare è comunque due, dunque
sembra che non ci siamo messi in una posizione tanto migliore, in realtà
è un’espressione più comoda di quella che avremmo nello spazio delle con-
figurazioni. Infatti, abbiamo lasciato solo i pezzi relativi ai propagatori e
abbiamo tolto di mezzo tutti i termini esponenziali (quindi i fattori di gam-
be esterne). Un confronto tra i diagrammi nello spazio delle configurazioni
e degli impulsi è in figura 3.13.

3.5.3 Regole di Feynmann nello spazio degli impulsi per la
teoria ϕ̂4

Vediamo, in base a quello imparato poco fa, quali sono le regole di Feynmann
nello spazio degli impulsi nello spazio degli impulsi:

• Ad ogni vertice associamo il coupling (−iλ).

• Ad ogni linea interna associamo il quadri-impulso q ed il corrispondente
propagatore (vedi la figura 3.14):

i

q2 −m2 + iϵ
. (3.5.41)
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Figura 3.13: Confronto diagrammi nello spazio delle configurazioni e degli
impulsi della teoria ϕ4(z).

• In ogni vertice imponiamo la conservazione del quadri-impulso.

• Integriamo su tutti i quadri-impulsi con misura:

d4k

(2π)4
. (3.5.42)

• Alle linee esterne associamo un fattore 1.

• Dobbiamo dividere per il fattore di simmetria D.

• Dobbiamo includere la δ di conservazione del quadri-impulso totale ad
ogni diagramma.

Figura 3.14

Un esempio di applicazione di queste regole può essere il diagramma in
figura 3.15.

In questo caso l’ampiezza al secondo ordine, seguendo le regole di Feyn-
mann, sarà:

A2 = (2π)4δ4(q − p)× (−iλ)2

6
×

×
∫

d4k2
(2π)4

d4k3
(2π)4

i

k21 −m2 + iϵ

i

k21 −m2 + iϵ

i

(p− k1 − k2)2 −m2 + iϵ

(3.5.43)

in cui abbiamo utilizzato la conservazione del quadri-impulso per integrare
su k3.
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Figura 3.15

3.5.4 Scattering di due particelle

Abbiamo visto con la sezione §3.5 come trattare la teoria ϕ̂4 e tutte le regole
di Feynmann relative ad essa, però, siamo ancora limitati alla trattazione di
una singola particella che interagisce, vediamo brevemente in questa sezione
un primo approccio alla teoria dello scattering. Questo argomento sarà am-
piamente trattato nel corso successivo di QFT.

Se abbiamo due particelle che entrano nel diagramma di Feynmann, in-
teragiscono con una quanche HI e poi ne escono, allora ci rendiamo subito
conto che l’ampiezza di transizione è:

A = ⟨q1q2| Ŝ |p2p1⟩ = (2π)6
√
16Eq1Eq2Ep1Ep2 ⟨0| âq1 âq2Ŝâ†p1 â

†
p2 |0⟩ (3.5.44)

e descrive due particelle che entrano nel sistema con inpulso p1 e p2 che
successivamente ne escono con impulso q1 e q2. A questo punto si potrebbe
scrivere un’espressione per HI , inserirla in Ŝ, espanderla in serie e calcolare
tutte le possibili contrazioni e contributi. Però noi abbiamo imparato che i
diagrammi di Feynmann sono uno strumento potentissimo e ci permettono
di non fare i conti a mano semplicemente guardano i disegni. Alcuni dei
contributi alla matrice di scattering Ŝ sono mostrati in figura 3.16.

I diagrammi (a) e (b), come si vede dall’assenza di vertici contribuitsono
all’ordine 0 e il loro contributo sarà proporzionale semplicemente a delle δ
di conservazione:

A(a)
0 = (2π)6

√
16Eq1Eq2Ep1Ep2δ

3(q⃗1 − p⃗1)δ3(q⃗2 − p⃗2) (3.5.45)

A(a)
0 = (2π)6

√
16Eq1Eq2Ep1Ep2δ

3(q⃗1 − p⃗2)δ3(q⃗2 − p⃗1) (3.5.46)

che ovviamente rappresentano il fatto che essendo particelle identiche, non
avendo differenziato gli operatori di creazione e distruzione (quando abbiamo
a che fare con particelle diverse diversifichiamo i campi presenti in A), pos-
siamo confonderele e non possiamo dire se la particella che entra con p1 esce
con q1 o con q2 (idem per la particella p2), per cui consideriamo entrambi i
diagrammi. Non essendoci interazioni non danno contributo allo scattering e
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Figura 3.16: Alcuni possibili diagrammi di Feynmann per la matrice Ŝ,
fino al secondo ordine.

non sono processi misurabili nell’esperimento. Le cose cominciano ad essere
interessnti all’ordine 1, in cui abbiamo i diagrammi disconnessi, non interes-
santi (d) ed (e), ma anche il diagramma connesso (c), il quale sarà anch’esso
proporzionale ad una delta di conservazione:

A(c)
1 = (2π)4(−iλ)δ4(q1 + q2 − p1 − p2). (3.5.47)

È interessante anche l’ordine due in cui il diagramma più rilevante è (f) il
cui contributo sarà:

A(f)
2 = (2π)4δ4(q1 + q2 − p1 − p2)

(−iλ)2

2
×

×
∫

d4

(2π)4
i

k2 −m2 + iϵ

i

(p1 + p2 − k)2 −m2 + iϵ
. (3.5.48)
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3.6 Teoria di Yukawa

Parliamo in questa sezione dell’idea alla base della teoria di Yukawa, che pur
essendo precedente a Feynmann, permette di capire l’enorme importanza
della teoria del propagatore.

Una delle cose più interessanti delle particelle è che interagiscono tra loro.
L’idea di Yukawa è incentrata su una nozione chiave: le particelle interagi-
scono scambiandosi quanti di forza, cioè particelle virtuali che mediano
la forza di interazione. Le particelle virtuali sono quelle particelle che non
rispettano la condizione di mass-shell, cioè che violano la relazione che lega
massa ed energia in relatività ristretta, per cui sono particelle tali da:

E2 − p⃗2 ̸= m2. (3.6.1)

Com’è possibile che si possa non rispettare il mass-shell? La Meccanica
Quantisticaci consente di violare questa dispersione classica, purché non lo
facciamo per troppo tempo! Invocando l’incertezza energia-tempo, per cui:

∆E∆t ∼ ℏ (3.6.2)

possiamo dire che le particelle di energia E possono esistere purché lo facciano
per un periodo abbastanza breve per cui si abbia ∆t ≤ ℏ/∆E. Le particelle
virtuali, quindi, devono avere un raggio finito poiché: non possono vivere per
sempre e devono viaggiare a velocità finite. Yukawa intuì che il potenziale
mediato dalla particella virtuale avrebbe avuto la forma:

V (r⃗) ∝ −e
−|r⃗|/a

4π|r⃗|
(3.6.3)

in cui a è un parametro la cui dimensione è una lunghezza. Yukawa notò che
non era sufficiente un potenziale coulombiano, poiché vogliamo che l’azione
di V (r⃗) sia a corto range spaziale.

Se ricordiamo il corso di MQ2 possiamo notare che il potenziale (3.6.3)
è molto simile (in realtà è lo stesso) alla funzione di Green dell’operatore
(∇2 + k⃗2), che è l’operatore dell’equazione di scattering della Meccanica
Quantistica. Da questo, prendendo i|⃗k| = −m, otteniamo che il potenziale
di Yukawa (3.6.3) è la funzione di Green dell’equazione:

(∇2 −m2)V (r⃗) = δ3(r⃗) (3.6.4)

che è la parte spaziale dell’equazione di Klein-Gordon. Quello che impariamo
è molto di più, infatti abbiamo visto che il potenziale di Yukawa, essendo una
funzione di Green, è effettivamente un propagatore descrivente l’evoluzione
di un campo (virtuale) scalare. Il prezzo che bisogna pagare nella teoria per
avere particelle virtuali, ovvero che non rispettino il mass-shell, è quello che
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esse, oltre ad essere rappresentate da propagatori tipo (3.6.3) esse possono
viaggiare su una distanza, finita e fissata dalla loro massa.

Possiamo anche dare una rappresentazione grafica della teoria di Yuka-
wa. Facciamo riferimento alla figura 3.17. Abbiamo rappresentato l’asse
temporale sulla sinistra rivolto verso l’alto; il primo diagramma lo possiamo
interpretare come segue: possiamo immaginare processi spazio-temporali in
cui all’istante y0 la particella, che chiamiamo A, emette un segnale, ovvero
una particella virtuale Q con massa mQ, dalla posizione y che si propaga fino
al punto x, in cui arriva al tempo x0, in tale punto dello spazio e del tempo
collide con la particella B che si trova nello stesso punto x. Ovviamente, per
via dell’emissione e dell’assorbimento della particella virtuale, le particelle
iniziali A e B risulteranno diverse da quelle finali, che indichiamo A′ e B′.
Il bilancio energetico del processo lo possiamo scrivere come:

EA = EA′ + EQ (3.6.5)

in cui la particella EQ =
√
p2Q +m2

Q è l’energia che perde la particella A

emettendo la particella virtuale ed è anche l’energia che guadagna B.
Però, la conservazione dell’energia e la simmetria dell’interazione dal pun-

to di vista energetico sarebbero in guai seri se ci fermassimo solo al primo
diagramma per descrivere l’interazione tra le particelle A e B. Infatti, con-
siderando solo il primo, avremmo un trasferimento netto di energia da A a
B.

Per mantenere la simmetria consideriamo anche il processo inverso, ossia,
il processo in cui è B che emette una particella virtuale ed A che la assorbe.
Nel secondo diagramma vediamo per l’appunto la particella B che all’istante
x0 emette una particella virtuale Q, identica a quella del primo diagramma,
nel punto x, essa si propaga, al tempo y0 e nella posizione y incontra la
particella A, a cui restituisce la stessa quantità di energia che nel primo
diiagramma le aveva sottratto. Il bilancio energetico sta volta è:

EB = EB′ + EQ (3.6.6)

in cui EQ è l’energia che perde la particella B e che acquista A.
Entrambi i processi sono necessari affiché si conservi l’energia e la loro

somma dà esattamente il propagatore di Feynmann, raffigurato nel terzo
diagramma.

Infatti, quello che descrive un propagatore di Feynmann è lo scambio
di una particella virtuale, ossia off-shell. Ricordiamoci il denominatore dei
propagatori, ad esempio nel propagatore di Feynmann causale neutro, che
avevano poli in p2 = m2, ossia nelle condizioni di mass-shell e il messaggio,
chiaro, è che le funzioni di Green (o propagatori di Feynmann liberi) descri-
vono la progapagazione di tutte le particelle, meno quelle on-shell, dunque
descrivono la propagazione di particelle virtuali. In più, le linee che dise-
gnavamo per rappresentare dei propagatori (vedi il capitolo dei propagatori
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Figura 3.17: Raffigurazione scambio di particelle della teoria di Yukawa.

delle note di Introduzione alla QFT) non sono molto diverse alla vista dalle
linee della figura 3.17, e questo non a caso. Infatti, come vedremo più avanti
l’ampiezza di probabilità di un processo di scattering a due particelle contine
proprio il termine:

i

p2 −m2 + iϵ
(3.6.7)

che non è altro che il propagatore di Feynmann nello spazio degli impulsi.
Questo lo possiamo rapidamente verificare in MQ non relativistica servendoci
dell’apporssimazione di Born, che prevede che l’ampiezza di scattering f sia
data dalla trasformata di Fourier del potenziale:

f ∝ Ṽ (p⃗) =

∫
d3r V (r⃗)e−ip⃗·r⃗ (3.6.8)

in cui p⃗ è l’impulso dell’onda trasmessa, e nel nostro caso p⃗ è l’impulso
trasferito, cioè l’impulso della particella virtuale scambiata mediatrice della
forza di Yukawa. Se nell’espressione di f sostituiamo (3.6.3) e facciamo la
trasformata, otteniamo proprio:

f ∝ 1

−|p⃗|2 −m2 + iϵ
(3.6.9)

che è la parte spaziale del propagatore (3.6.7), ovvero la funzione di Grenn
dell’equazione di Klein-Gordon.

Notiamo un’ultima cosa. La particella mediatrice scambiata tra A e
B dev’essere perforza virtuale per ragioni di conservazione dell’energia e
dell’impulso. Infatti, se ci pensiamo un attimo, il processo di sola emissione
di un quanto Q:

A −→ A′ +Q (3.6.10)

non può avvenire. Immaginiamo di porci, ad esempio, nel sistema di riposo
di A, in cui EA = m2

Ac
2 (ricordiamoci che stiamo trattando una teoria rela-

tivistica, per cui possiamo studiarla in qualsiasi sistema di riferimento iner-
ziale). In questo caso, nello stato finale dobbiamo avere energia sufficiente
per emettere una nuova particella Q e per conferire il necessario "rinculo" ad
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A′. Com’è chiaro rendersi conto, la sola energia di riposo A non è sufficiente
né per l’una né per l’altra cosa.

Un diagramma di Feynmann per lo scattering di 2 particelle lo rappre-
sentiamo meglio in figura 3.18.

Figura 3.18: Raffigurazione scattering di due particelle della teoria di Yu-
kawa.

3.6.1 La teoria ψ̂†ψ̂ϕ̂

Nel corso di questo capitolo abbiamo detto che alcuni integrali che troviamo
dai diagrammi di Feynmann divergono e danno luogo a degli infiniti, una
delle poche teorie con diagrammi non divergenti è quella che analizzeremo in
questa sezione. La teoria di Yukawa ψ̂†ψ̂ϕ̂ descrive l’interazione di un campo
scalare carico, che indichiamo con non poca ambiguità con ψ̂, ed un campo
ϕ̂. Il riferimento per questa teoria è il capitolo 20 del Lancaster e Blundell
[1]. Questa teoria è importante perché la ritroveremo nello studio della QED.
Infatti, è una teoria molto simile alla elettrodinamica quantistica, ma con la
differenza che i quanti di energia non sono scambiati per mezzo di un fotone,
ma grazie ad una particella scalare ϕ̂. Le lagrangiane di interazione sono
leggermente diverse:{
LQED = LDirac + LEM + Lint

= LDirac + LEM − eψγµψAµ

,

{
LYukawa = LDirac + LKG + Lint

= LDirac + LKG − gψψϕ.

Il vertice della teoria è raffigurato in figura 3.19, che notiamo bene non essere
un vertice realizzabile in natura, ma è solo un pezzo, infatti di solito c’è un
altro vertice analogo attaccato tramite lo stesso campo ϕ̂.

La lagrangiana è:

L = ∂µψ†∂µψ −m2ψ†ψ +
1

2
(∂µϕ)

2 − 1

2
µ2ϕ2 − gψ†ψϕ (3.6.11)

in cui si può riconoscere la lagrangiana di interazione:

LI = −gψ†ψϕ (3.6.12)
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Figura 3.19: Raffigurazione vertice della teoria di Yukawa.

in cui g è la costante di accoppiamento. Ovviamente dobbiamo ricordarci
le espressioni dei campi scalari carichi, ma anche del campo scalare neutro.
Dalla lagrangiana (3.6.11) troviamo l’hamiltoniana di interazione:12

ĤI = gψ̂†ψ̂ϕ̂ (3.6.13)

che possiamo utilizzare per il conto dell’ampiezza di transizione espandendo
la matrice Ŝ. Implementiamo i conti:

A = ⟨q| Ŝ |p⟩ = (2π)3
√

2Ep

√
2Eq ⟨0| âqŜâp |0⟩ (3.6.14)

espandiamo la matrice Ŝ tramite la serie di Dyson:

Ŝ = T
[
1 + (−ig)

∫
d4z ψ̂†(z)ψ̂(z)ϕ̂(z)+

+
(−ig)2

2!

∫
d4y d4w

[
ψ̂†(y)ψ̂(y)ϕ̂(y)

][
ψ̂†(w)ψ̂(w)ϕ̂(w)

]
+ . . .

]
(3.6.15)

inseriamolo l’ampiezza:

A = (2π)3
√

2Ep

√
2Eq ⟨0| âq1âp |0⟩+

+ (2π)3
√

2Ep

√
2Eq(−ig)

∫
d4z ⟨0|T

[
âqψ̂

†(z)ψ̂(z)ϕ̂(z)âp

]
|0⟩+

+(2π)3
√

2Ep

√
2Eq

(−ig)2

2!

∫
d4y d4w ⟨0|

[
âqψ̂

†(y)ψ̂(y)ϕ̂(y)ψ̂†(w)ψ̂(w)ϕ̂(w)âp

]
|0⟩

(3.6.16)

e notiamo subito che: all’ordine 0 non otteniamo nulla di interessante, ma
semplicemente una delta di conservazione; al primo ordine troviamo proprio
0, visto che abbiamo imparato con il teorema di Wick che la contrazione di

12Ricordando che HI = −LI .
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un numero dispari di campi da un valore di aspettazione sul vuoto nullo.
L’unico termine interessante è il secondo ordine. Dobbiamo capire a cosa
corrispondono le varie contrazioni che otteniamo con il teorema di Wick;
le possibili contrazioni (non nulle) sono (indicando con â, b̂ gli operatori di
particella e antiparticella per il campo carico e con ĉ gli operatori per il
campo neutro):

ψ̂(x)ψ̂†(y) , ϕ̂(x)ϕ̂(y) (3.6.17)

âpψ̂
†(x) , ψ̂(x)â†p (3.6.18)

b̂pψ̂(x) , ψ̂†(x)b̂†p (3.6.19)

ĉqϕ̂(x) , ϕ̂(x)ĉ†q. (3.6.20)

Ora, dobbiamo interpretarli. Sappiamo bene che la contrazione diventa un
prodotto T-ordinato e vediamo subito che i primi due (3.6.17) sono due
propagatori. Le altre contrazioni le possiamo vedere con i calcoli espliciti
pinzanzo la contrazione tra due vettori di vuoto, vediamo (indichiamo con
m la massa dei campi carichi e con µ quella del campo neutro):

ψ̂(x)ψ̂†(y) =

∫
d4p

(2π)4
ie−ip(x−y)

p2 −m2 + iϵ
, ϕ̂(x)ϕ̂(y) =

∫
d4q

(2π)4
ie−iq(x−y)

q2 − µ2 + iϵ

(3.6.21)

âpψ̂
†(x) =

1

(2π)3/2
1√
2Ep

eip⃗·x⃗ , ψ̂(x)â†p =
1

(2π)3/2
1√
2Ep

e−ip⃗·x⃗

(3.6.22)

b̂pψ̂(x) =
1

(2π)3/2
1√
2Ep

eip⃗·x⃗ , ψ̂†(x)b̂†p =
1

(2π)3/2
1√
2Ep

e−ip⃗·x⃗

(3.6.23)

ĉqϕ̂(x) =
1

(2π)3/2
1√
2Eq

eiq⃗·x⃗ , ϕ̂(x)ĉ†q =
1

(2π)3/2
1√
2Eq

e−iq⃗·x⃗.

(3.6.24)

Prima di vedere nel dettaglio ciascun termine cosa rappresenta notiamo
che i diagrammi di Feynmann in questa teoria saranno leggermente diversi da
quelli disegnati per ϕ̂4, dal momento che abbiamo campi carichi e dobbiamo
distinguere i termini di particella e antiparticella, e per cui dovremo disegnare
le linee con delle freccie proporio a mostrare se si sta andando avanti nel
tempo, quindi si ha una particella, o indietro nel tempo, e quindi si ha
un’antiparticella. Attenzione che le frecce non rappresentano la direzione
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dell’impulso. Vediamo i vari contributi cosa rappresentano:

ψ̂(x)ψ̂†(y) = propagatore campo carico da x a y (3.6.25)

ϕ̂(x)ϕ̂(y) = propagatore campo neutro da x a y (3.6.26)

âpψ̂
†(x) = particella uscente dal vertice x con impulso p⃗ (3.6.27)

ψ̂(x)â†p = particella entrante nel vertice x con impulso p⃗ (3.6.28)

b̂pψ̂(x) = antiparticella uscente dal vertice x con impulso p⃗ (3.6.29)

ψ̂†(x)b̂†p = antiparticella entrante nel vertice x con impulso p⃗ (3.6.30)

ĉqϕ̂(x) = antiparticella uscente dal vertice x con impulso q⃗ (3.6.31)

ϕ̂(x)ĉ†q = particella entrante nel vertice x con impulso q⃗. (3.6.32)

Vediamo ora, prima le regole di Feynmann per questa teoria e poi come
possiamo vedere processi di scattering.

3.6.2 Regola di Feynmann per la teoria ψ̂†ψ̂ϕ̂

Elenchiamo le regole di Feynmann per la teoria ψ̂†ψ̂ϕ̂:

• Ad ogni vertice associamo un fattore (−ig).

• Per ogni linea interna relativa al campi ϕ̂ includiamo un propagatore:

i

q2 − µ2 + iϵ
. (3.6.33)

Per ogni linea interna del campo ψ̂ includiamo il propagatore:

i

q2 −m2 + iϵ
. (3.6.34)

• Integriamo su tutti i quadri-impulsi non fissati.

• Includiamo le delta di conservazione del quadri-impulso totale.

• A tutte le linee esterne associamo un fattore 1

• I coefficienti di simmetria sono tutti D = 1.
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3.6.3 Scattering di due particelle per la teoria ψ̂†ψ̂ϕ̂

Consideriamo, come fatto per la teoria ϕ̂4, un processo di scattering per due
particelle, dunque un processo in cui abbiamo due particelle in ingresso e
due in uscita. Come sappiamo dobbiamo calcolare la quantità:

A = ⟨q1q2| Ŝ |p2p1⟩ = (2π)6
√
16Eq1Eq2Ep1Ep2 ⟨0| âq1 âq2Ŝâ†p1 â

†
p2 |0⟩ (3.6.35)

in cui dobbiamo inserire lo sviluppo di Dyson della matrice Ŝ con all’interno
l’espressione di HI .

Come succedeva per la teoria ϕ̂4 anche ora abbiamo l’ordine 0 che non da
nessun contributo rilevante, se non delle delta di conservazione, e l’ordine 1,
come visto nel caso ad una particella, che è nullo per via del fatto di avere un
numero dispari di campi. Il contributo interessante viene dal secondo ordine
dello sviluppo di Ŝ, per cui si ha:

A2 ∝ ⟨0| âq1 âq2ψ̂†(y)ψ̂(y)ϕ̂(y)ψ̂†(w)ψ̂(w)ϕ̂(w)â†p2 â
†
p1 |0⟩ . (3.6.36)

Dell’ampiezza (3.6.36) possiamo avere 3 contrazioni non banali, che sono:

⟨0| âq1 âq2ψ̂†(y)ψ̂(y)ϕ̂(y)ψ̂†(w)ψ̂(w)ϕ̂(w)â†p2 â
†
p1 |0⟩ (3.6.37)

⟨0| âq1 âq2ψ̂†(y)ψ̂(y)ϕ̂(y)ψ̂†(w)ψ̂(w)ϕ̂(w)â†p2 â
†
p1 |0⟩ (3.6.38)

⟨0| b̂q1 âq2ψ̂†(y)ψ̂(y)ϕ̂(y)ψ̂†(w)ψ̂(w)ϕ̂(w)â†p2 b̂
†
p1 |0⟩ . (3.6.39)

I tre diagrammi associati ai tre valori di aspettazione sono riportati nelle
figure 3.20, 3.21 ed 3.22 rispettivamente.

Il diagramma associato a (3.6.37) rappresenta una particella entrante

(ψ̂(y)â†p1), che emette una particella mediatrice (ϕ̂(y)ϕ̂(w)) che viaggia da

w a y e collide con una seconda particella (ψ̂(w)â†p2); ovviamente, dopo lo
scambio della particella messaggera, le particelle proseguono il loro moto

(âq1ψ̂
†(y) e âq2ψ̂

†(w)). Questo diagramma è anche noto come canale t, per
via della variabile di Mandelstam13 t = (p1− q1), che è l’impulso conservato
(e trasportato dalla particella virtuale).

Il diagramma (3.6.38) è sostanzialmente identico a (3.6.37), poiché nes-
suno dei due considera antiparticelle ed entrambi hanno due particelle in
ingresso e due particelle in uscita; l’unica loro differenza è l’impulso delle par-
ticelle in uscita, che ovviamente, trattando particelle identiche non possiamo

13Le variabili di Mandelstam t, u ed s sono degli invarianti di Lorentz e si utilizzano
per nominare questo tipo di diagrammi per via dei vari impulsi conservati in ciascuno.
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sapere chi è chi e consideriamo tutte le possibilità. Il diagramma (3.6.38) è
chiamto canale u, per via della variabile di Mandelstam u = (p1 − q2).

Il diagramma (3.6.39) è l’unico dei tre che considera i contributi sia di
particella che di antiparticella. Questo diagramma ci mostra una particella

entrante (ψ̂(w)â†p2) e un’antiparticella entrante (ψ̂†(w)b̂†p1), che annichilisco-

no nel punto w emettendo una particella virtuale (ϕ̂(y)ϕ̂(w)), la quale nel

punto y emette la coppia di particella (âq2ψ̂
†(y)) e antiparticella (b̂q1ψ̂(y)).

Figura 3.20: Raffigurazione canale t

Figura 3.21: Raffigurazione canale u

Figura 3.22: Raffigurazione canale s

Ovviamente possiamo raffigurare i diagrammi di Feynmann nello spazio
degli impulsi, come possiamo vedere nelle figure 3.23, 3.24 ed 3.25, le cui
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ampiezze di probabilità sono:

A(2)
t ∝ (−ig)2 i

t− µ2 + iϵ
(2π)4δ4(p′ + k′ − p− k) (3.6.40)

A(2)
u ∝ (−ig)2 i

u− µ2 + iϵ
(2π)4δ4(p′ + k′ − p− k) (3.6.41)

A(2)
s ∝ (−ig)2 i

s− µ2 + iϵ
(2π)4δ4(k + k′ − p− p′). (3.6.42)

(3.6.43)

Figura 3.23: Raffigurazione canale t nello spazio degli impulsi

Figura 3.24: Raffigurazione canale u nello spazio degli impulsi

Figura 3.25: Raffigurazione canale s nello spazio degli impulsi
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