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Prefazione

In questo documento voglio raccorgliere le mie note rispetto gli appunti rel-
ativi al corso di "Fondamenti di Teoria Quantistica dei Campi" svolto
dal professor C. Angelantonj e seguito all’ Universita degli studi di Torino
nell’a.a. 2025-2026 aggiungendo eventualmente i riferimenti a vari libri (piu
o meno utili a seconda della volonta di approfondire). Questi appunti sono
una riscrittura degli appunti presi in aula, quindi la fonte principale sono le
note del/la professore/ssa, ma i libri sono fondamentali per una completa
comprensione degli argomenti. Durante il corso sono stati consigliati di-
versti libri (indicati in Bibliografia), cercherd di indicare i vari riferimenti
bibliografici all’inizio di ogni capitolo.

Queste note sono piccole parti che ho ritenuto utili durante lo studio
per 'esame. Sono spudoratamente prese dalle note di E. Chiarotto, per cui
non € nulla di orginale. Chiaramente sono basate sui libri. Non sono pre-
senti in queste note argomenti aggiuntivi rispetto al contenuto del corso e
delle note principali, ma solamente un altro modo di derivare i stessi risultati.

Chiaramente sono da intendere come degli appunti personali scritti in
bella, eventuali sviste, errori o inesattezze sono dovute alla mia ignoranza,
ma soprattuto ho scritto questi appunti in modo da "spiegare” a me stesso
I’argomento, quindi alcune parti potrebbero sembrare troppo prolisse o troppo
superficiali per alcuni. In ogni caso fa piacere se possono aiutare qual-
cun’altro. Spero in ogni caso di esser riuscito a scrivere un documento chiaro
e ben strutturato.

Alcune volte posso non far riferimento ad un particolare testo o corso pas-
sato, in questi casi mi sto riferendo ai MIEI appunti riguardanti quell’argomento.
Una mia collezione di appunti é presente nella mia pagina personale di
GitHub: gCembalo.github.io.

Qualsiasi errore/refuso puo essere inviato alla mia mail personale:
gabriele.cembalo020gmail. com.

‘ Ultimo aggiornamento: 20/01/2026 ‘



https://gcembalo.github.io/assets/pdf/lecture_notes/FQFT.pdf
https://gCembalo.github.io
mailto:gabriele.cembalo02@gmail.com
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Chapter 1

Campo scalare

1.1 Propagatore di Lehmann-Kallen e autostati di
una teoria interagente
L’inizio ¢ uguale a quello della mia sezione.

0

Visto il caso 2° > °, possiamo definire il propagatore interagente, in

analogia al caso libero, come:

Ap = (QT[p(x)o(y)] [©2) (1.1.1)
= 0(a” — 4°) (2 S(@)d(y) 1) +0(° — ) (2 d(x)d(x) [)  (1.1.2)
= > HQI6(0) [a) * [e7 7D (2 — y) 4 el 9y — 20)).

(1.1.3)

Possiamo definire la densita spettrale come:

pla) =Y (2m)" 6% (q — pa) (21 6(0) )| (1.1.4)

«

che & una densita di massa/energia, e in cui ¢ = p, (per via della §) e in cui
q(2, > 0, ovvero tale per cui g, ¢ un oggetto time-like.

Notiamo che Ap & un’invariante di Lorentz, per cui, anche p(q) dovra
esserlo. Scriviamo dunque:

p(a) = 0(¢") o(¢?) (1.1.5)
o(q?) = /Uood(m2) a(m?)§(¢* —m?) (1.1.6)

che chiamiamo spettro di massa. Possiamo scrivere il propagatore interagente

1



2 CHAPTER 1. Campo scalare

(1.1.3) come:

Ap = / (;1;:)14 p(q) [e*iq(:rfy) 0(z" — 4°) + 792 g0 — xo)} (1.1.7)

4 00
B / (2754 6(a’) /0 d(m?) o(m?)d(q* —m?) [e_"q(’f—y) 0(z° — 4°)+

i) g(y0 _ xo)] (1.1.8)
00 4 5 0 __ m il
:/0 d(m2) o(m?) / (2734 (quqf: ) [e a( y)G(xO — ")+
+ e M=) (0 — 3;0)] (1.1.9)
= /000 d(mQ) U(m2) A%(x — y,mQ) (1.1.10)

dove AOF (x —y,m?) & il propagatore di Feynman per la particella libera di
massa m, mentre o rappresenta la densitd degli stati (compresi gli stati
legati). La rappresentazione ¢ detta rappresentazione di Lehmann-
Kallen. Nel caso di campo libero avevamo o(m?) = §(m? — m3).

Possiamo anche dimostrare che la o é correttamente normalizzata per
essere una densitad. Da (1.1.10) otteniamo che:

(Q [o(x), ()] 12) = /Oood(m2) a(m?) (0] [po(x), do(y)][0)  (1.1.11)

se deriviamo rispetto 3°:

(Qf [¢(z), m(y)] [92) = /Oood(mQ) a(m?) (0] [¢o(x), mo(y)] [0)  (1.1.12)

in cui abbiamo ipotizzato che il potenziale di interazione non dipende dalle
derivate del campo. Ovviamente, noi ricordiamo il commutatore (??), che
vale a prescindere dal fatto che sia una teoria libera o interagente, per cui
dobbiamo avere:

1= / d(m?) o(m?) (1.1.13)
0
dunque, la o(m?) ha le dimensioni che deve avere.

Fin’ora non ci siamo preoccupati di distinguere stai a singola particella
da stati multi-particelle. Ricordiamo che esistono 3 set di autostati possibili:

e |0): lo stato di vuoto libero (assenza di particelle).

e |a): lo stato di singola particella libera di massa my.
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e |a,n): lo stato legato di molte particelle, dipende dall’impulso e da
altre n variabili, ha energia:

Ej, = k2 — M2 (1.1.14)

con M > mg e in cui M é la massa minima per stati legati, di almeno
2 particelle. Notiamo che per m > M la ¢ assume valori continui.

Per la precisione, dopo lo stato a singola particella, possiamo avere uno stato

legato a molte particelle che puo avere M < 2mg (ma sempre M > mg), ma

dobbiamo anche notare che se escludiamo gli stati legati ci rimangono solo gli

stati con M > 2mq (che possono avere momento relativo grande a piacere!)!.
Per uno stato legato possiamo scrivere:

o(m?) = Z§(m?* —md) + 0(m? — M?) 5(m?) (1.1.15)

e dunque:

Ar = [T a(m) 3o (20007 )+ 0m M) )]
(1.1.16)

= Z A%z —y,md) + /OO d(mQ) AL (z —y,m?) 5(m?) (1.1.17)
M2

in cui il primo termine é il propagatore di un campo libero moltiplicato per
una costante di normalizzazione Z (descrive una sola particella), che & utile
perché se vogliamo correlare il campo libero ¢ al campo interagente ¢, allora
abbiamo ¢ = V/Z ¢y, cioé permette di riscalare il campo libero.

Notiamo che imponendo la normalizzazione di o(m?) abbiamo:

—Oom2am2: Oom25m2 1.
1= [T a) o) = 2+ [ () s (1118

M2

e siccome: ~
/ d(m?) 5(m?*) >0 (1.1.19)
M2

dobbiamo avere Z € (0,1), dove Z da una misura di quanto il campo inter-
agisca con se stesso e si calcola tramite teorie perturbative.

1.2 Disaccoppiamento degli stati a multiparticelle

I riferimenti sono p. 53-54 dello Srednicki [7].

Quando abbiamo una teoria libera sappiamo che vale:

(k,n| do(2)[0) =0 (1.2.1)

! A riguardo vedi pag. 51 dello Srednicki [7].
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in cui a sinistra abbiamo uno stato legato e a destra il vuoto. Vogliamo
dimostrare in questa sezione che vale:

lim (k,n|¢o(z)|2) =0 (1.2.2)
t—00
ovvero che gli stati a molte particelle si disaccoppiano.

Prendiamo come stato iniziale uno stato a multiparticella, che puo essere
scritto come una sovrapposizione di pacchetti d’onda:

0 =Y [ pento) lp.n) (1.23)

e che dev’essere normalizzabile.
Notiamo che vale:

(p,n| ¢(x) Q) = (p,n| P* $(0) ™7 |Q) (1.2.4)
= ¢ (p,n| $(0) |Q2) (1.2.5)
=" A, (p). (1.2.6)

Ora, calcoliamo:

Wl 19 =Y [ @pvie) (p.nlal ) (12
—-iCn Y [ @pviw) onl [ @ro®) [ a8 0] 19)

(1.2.8)
——iCn) Y [ @pdhd%s[vim) a(k) (7 81 (ol (o) |9))]
! (1.2.9)

= —i(2m)* ) / &Ppd®k d®a [wi(p) g(k) (e 9, e An(p))}
! (1.2.10)

= @Y [ Epdkda[v;0) k) (B, + B 7 4,(0)]
! (1.2.11)

— @S [ %k (i) k) (B + B e 4, (5) % — )
! (1.2.12)
ricordando che:

E, = 2+ M? (1.2.13)

per uno stato a multi-particella, e:

B =\ k2 +m? (1.2.14)
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per lo stato di singola particella. Se applichiamo la §2 e usiamo il fatto
che M > m, allora nell’integrale rimane solo una fase oscillate positiva,
che quindi tende a zero quando ¢t — —o0, per via del lemma di Riemann-
Lebesgue, per cui vediamo che gli stati a multi-particella si disaccoppiano.

1.3 Operatori di creazione e distruzione

In questa sezione cerchiamo le espressioni degli operatori di creazione e dis-
truzione in termini dei campi scalari ¢ e ¢. Per semplicita indicheremo:

N 3
d3p = (%C)lg];Ep (1.3.1)
e di conseguenza le espressioni dei campi saranno:
o) = [ @5 [alp)e 7 + ol (p)e]. (1.3.2)
Calcoliamo la derivata temporale del campo:
o) = [ @5 (i) [alp)e ™ - al(p)e] (1.3.3)

e calcoliamo la quantita:
/ A3z eid® [gia(x) - z'qub(x)} - (1.3.4)
= /dga: d3p e'” {— iEp(a(p)e*"p‘” — aT(p)eipx) —iE, (a(p)e*ipx—i—
+al(p)e™)] (1.3.5)

= /d3x d3ﬁ[ —i(Ep + Ey) a(p) e tP—a)T

+i(By — By)al (p) /007 (1.3.6)
- d3p ‘ —i(p—q)z 3 <3
_/(27r)32Ep {_Z<Ep+Eq)a(p)e 1) 3 (p — q)+
+i(By — B al(p) M0 (2m) o+ )] (13.7)
- (1.3.8)

in cui nel passaggio (1.3.6) abbiamo integrato su z per far comparire la §.
Dunque abbiamo trovato:

a(p) = i/d?’m el [qﬁ(az) - iEqQS(:U)] (1.3.9)
- z’/de [em 9, ¢>(x)} (1.3.10)
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“— — «—
in cui abbiamo definito 0y = 0y — 0. Analogamente:
af(p) = —i/d3x o iaw [Q;(x) + iqub(x)} (1.3.11)
. <
= / &z [e—m 3t¢(a:)]. (1.3.12)

Possiamo definire, nella teoria libera, 'operatore di creazione in modo
che sia indipendente dal tempo come:

al = /d3k: gp(k) a’ (k) (1.3.13)

in cul abbiamo:

gp(k) o<exp{—(k4;§)2} (1.3.14)

che & un pacchetto d’onda con larghezza o e centrato in p. Definito con
(1.3.13) abbiamo a;r, che crea una particella in un intorno di p.

Notiamo che se supponiamo che a;r, sia della stessa forma anche in una
teoria interagente, allora esso non sara indipendente dal tempo, per cui con-

viene considerare:
Ip) = lim al(t) |2). (1.3.15)

——00

1.4 Formula di LSZ

Per il campo interagente abbiamo una lagrangiana della forma:

2 1

1
L= 5(8;@) - §m(2) & + Lint (1.4.1)
le cui equazioni del moto sono:
(0 +md) ¢ = 228 = jo(o). (1.4.2)
o
Nel caso di campo libero £;,; = 0 e abbiamo:
1 2 1 5 9
L= 5(@@0) —gm or (1.4.3)
le cui equazioni del moto sono:
(O +m?)¢o =0 (1.4.4)

in cui m é la massa fisica misurabile del campo ¢.
Studiamo:

(O +m*)¢ = jo() + (m* — m)d* = j(¢) (1.4.5)
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la cui soluzione dipende dalla soluzione omogenea, che € la teoria libera:
o) =VZon+ [ alyGrla 1) i(w) (1.46)

Se abbiamo uno stato iniziale |a) e vogliamo ricavare lo stato finale |3).
La densita di probabilita di scattering ¢ So3 = (|cv), che poi possiamo legare
alla sezione d’urto, che & un’osservabile.

Possiamo osservare che quando abbiamo un’interazione a corto raggio,
nei due stati, iniziale e finale, quindi gli stati a ¢ — 400, rimane solo il
campo libero, che per definizione interagisce solo con se stesso.? Infatti, si
ha:

{@m@%\@mmw>sw=w (1.4.7)

(ald|B) — VZ (a] pout |B) se t =400

queste sono dette condizioni LSZ (Lippman-Symanzik-Zimmerman), in cui
si indica con ¢ il campo interagente e con ¢;, € @oy: i campi liberi di stato
iniziale e finale.

Prendiamo un solo tipo di particelle e studiamo (Byyt|aip) in cui possiamo
esplicitare una particella di impulso p, ovvero consideriamo:

o) = |a,p) = a'(p) |&) (1.4.8)

in cui possiamo ricordare le espressioni trovate (1.3.10) e (1.3.12).

Nota In generale, alcune delle particelle potrebbero non interagire, questo
fenomeno ¢ detto forward scattering: in questo caso lo stato iniziale e finale
contengono una particella identica (stesso tipo e stesso momento).

Se ignoriamo il forward scattering, ovvero se ipotizziamo che tutte le
particelle dello stato iniziale interagiscano, allora Vp [ a;y, abbiamo p ¢ Sout,
che si pud anche scrivere come:

(Bout| alu(p) =0 (1.4.9)

20vviamente si intende limite in senso debole, fuori dall’integrale.
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e viceversa. Calcoliamo 'ampiezza di scattering:

(Blay = (Bl al,(q) — al(q) 1G) (1.4.10)

= —i/d3x [e—iqaﬁ a; (B8] Pin(z) — Pout() yd>] (1.4.11)
- 77 <t£131w—£$00> [l b slowm] )

_ \%/d% o, [e*iqw o1 (8] 6(2) \@)} (1.4.13)

= = [t [ (@ (3l0() 1)) — (31 0(a) 6) [0 ]
(1.4.14)
= ﬁ / d'z [ (07 (8] 6(x) &) ) + (Bl o) |&) [(—V2 + m?) e~i47]
(1.4.15)
_ \% /d4x :e—W (02 — V% + m?) (8] ¢(x) |&) }] (1.4.16)
_ \% /d% 7 (@, 4+ m?) (8] 6() |3) (1.4.17)

in cui: nel passaggio (1.4.12) abbiamo utilizzato le condizioni LSZ (1.4.7);
in (1.4.15) abbiamo ricordato 1’equazione di Klein-Gordon, per cui:

(O +m?)e % = (97 — V2 + m?)e 9" = 0; (1.4.18)

all’espressione (1.4.16) ci siamo arrivati integrando per parti due volte.

Tutto il calcolo che abbiamo fatto per arrivare a (1.4.17) serve ad estrarre
una sola particella; se estraiamo tutte le particelle arriviamo alla formula di
riduzione di LSZ.

Studiamo (5| ¢(z) |&@) in cul estraiamo nello stato finale:

(8 = <Bp‘ = <B‘ a(p) (1.4.19)
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e rifacciamo lo stesso ragionamento fatto per arrivare a (1.4.17):

(816(2) 1) = { B] acua(p) 6(x) — o) ain(p) 1) (1.4:20)

=i [ @y [e7 31, (3] 6mals) 9(2) ~ 6(0) inlo) )| (1121)

= (g~ ) [ [ (3] Tiowew) )]
(1.4.22)

Tlo()e())[a) | (1.4.23)

PSS
=

/
/ y
— (B| Tlsws(@)|a) (37 )] (1.4.24)
fasl
/

Determiniamo finalmente la formula di riduzione LSZ per gli scalari:

_ i A 4. ,—1qiT; 2
out<p17---7pn’q17-'-7qwl>in_ \/Z H d:)sze (Dmi+m )
i=1

n
" {H / dy; €% (O, +m?)
j=1

QU T[p(1) - - d(yn)d(x1) - G2m)] |2) -

(1.4.27)
Nello spazio dei momenti otteniamo:
m,n
H (qz2 — mz) (pj2 — m2) G(q1---qmp1---Pn) (1.4.28)
ij=1

in cui il primo fattore sono i propagatori amputati tramite il calcolo dei
residui, mentre il secondo fattore ¢ la funzione di correlazione (di Green) ad
m + n gambe.

Per la precisione, la funzione di correlazione (di Green) a m +n

X
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gambe é definita come:

m

G(q1 « e gmp1 - - .pn) = !]‘_[/(1433Z eiqmi] H /d4yj eipjyj X

X QU T[o(y1) - .- d(yn)(@1) - .- (am)] [2)

m

= (\/Z)nm [H q2_im2]
1 i

1=

n
J]=

7
1p?_m2 out <p17--->pn|QIa~-->Qm>m

(1.4.29)

in cui possiamo osservare che ha dei poli legati alla condizione di mass-shell,
inoltre, si ha che I'ampiezza di probabilita é legata al residuo della funzione
di Green nei poli quando tutti i momenti vanno on-shell.

Vedi successivi per dettagli. (si?) Indichiamo con G la funzuine di corre-
lazione/Green (1.4.29), come facciamo sempre con le grandezze nello spazio
dei momenti. La funzione di correlazione/Green amputata si ottiene elimi-
nando i propagatori delle gambe esterne dalla funzione di Green nello spazio
dei momenti (1.4.29):

n

¢ =GV TT Ar:). (1.4.30)

=1

Nota che esiste un abuso di notazione anche qui, per cui si chiama G sia la
funzione di Green, sia la funzione di Green amputata; ricordiamoci pero che
le regole di Feynman restituiscono la funzione di Green amputatal!

1.5 Esempio sulla funzione di Green

Studiamo:

A 4

Eint = _I

(1.5.1)

e calcoliamo la funzione di correlazione/Green con 2 e con 4 gambe al
prim’ordine perturbativo, utilizzando quello che abbiamo imparato da LSZ
(1.4.29), dalla formula di GML (??) e dal teorema di Wick.
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Vediamo la funzione a 2 gambe:

6o, 2) = (0Tl 1) (152
~—ig 017 (06 [ dtz61] o) (153
_ —25 /d 2 Ay — 2) Alws — 2) Az — 2) (1.5.4)
X A(pg) —ip2 <w2 Z>A(p) e~ (%) (1.5.5)
= [ [ el + par)) x
X B0 As) ! 4 [ ST AW (150)

dunque nello spazio degli impulsi abbiamo:

A~ - 4,
—%A(pl)A(pQ) (2m)* 6 (; +p2)/(;17£4 A(p) (1.5.7)

é(2) (p17p2) -

la funzione di Green amputata di conseguenza é:

i\ d*p

GO (p1,ps) = 2 ) @ap A(p) - (2m)" 6% (p1 + p2) (1.5.8)

e dunque, dalla relazione tra la funzione di Green amputata ed M:

M = —% (;1;1)’4 A(p). (1.5.9)

Vediamo a 4 gambe:
G (w1, @, 23, 24) = (A T[d(1)$w2)d(3)(24)] |) (1.5.10)
—Z<OIT[¢1¢2¢3¢4/d4z¢§] 10 (1.5.11)

= —i/\/d4z A(xy — 2) A(ze — 2) A(zz — 2) A(zg — 2) (1.5.12)

4 4 4 B ) B ‘
_—Z)\/d4 / dpl d p2 d ]9)3 ((;711-9)4 A(pl)eizm (z1—2) A(pg) e—sz(xzfz)x

X A(ps)e %p3<x3 Z>A(p4) ~tpa (@4=2) (1.5.13)

dip; d'py dips dipy
=—1 /(%) 2r)1 2m)f (2n)" exp{—i(p1x1 + paz2 + p3x3 + paxa)} X

x A(p1) A(p2) A(ps) Apa) (27)* 6*(p1 + p2 + p3 +pa) (1.5.14)
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che nello spazio degli impulsi diventa:

G (py1, pa,p3, pa) = /d4$1 dtzo dzs dzy exp{—i(piz1 + paza + p3x3 + paxa)} X

X (Q T[p(x1)p(x2)d(3)p(w4)] [S2) (1.5.15)
~ —iAA(p1) Ap2) Alps) A(ps) (2m)* 6*(p1 + p2 + p3 + pa).-
(1.5.16)

La funzione di Green amputata é:
GW = —ix(2m)* 5t 1.5.17
A = —iA(2m)" 0" (p1 + p2 + 3 + pa) (1.5.17)
dunque, dalla relazione tra la funzione di Green amputata ed M, ricaviamo:

M = —i. (1.5.18)

1.6 Potenziale di Yukawa scalare (scattering tra nu-
cleoni e pioni)
Consideriamo una teoria con 2 tipi di particelle scalari (spin 0), reali (massa

i, con campo o) e complesse (massa m, campo ¢). Abbiamo la lagrangiana

libera che é:
1

Lo = §8Mcr Jo — %,u202 + 0,0 dp — m2po. (1.6.1)

Le soluzioni per i campi liberi le conosciamo gia e sono:

3 r . .
o= / @R IE, 2;)13]; B a(p)e P+ af (p)em] , K= % =6 (162
. d3p [ —ipx t ipT _ oL _ 4
¢ = /(270325;» b(p)e™" + ¢! (p)e™ } , T= 55 ¢ (1.6.3)
G [ e pte] | w08
¢ - /(277)32Ep _C(p)e PT 1 p (p)e P } y = % - ¢ (1'6'4)

Come nel caso precedente dobbiamo imporre la regola di commutazione, a

tempi uguali:
(6, 7] = i63(z — v). (1.6.5)

Inoltre abbiamo che:

Ag(z —y) = (0| T[p(x)(y)]0) (1.6.6)

quando z¥ > y¥ diventa:
(0] by b1, |0) (1.6.7)
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quindi, abbiamo una particella; mentre quando 2% < ¢° diventa:
(0] ¢, ¢l |0) (1.6.8)
e abbiamo un’antiparticella.

Se lasciamo il campo ¢ invariato e facciamo una trasformazione di fase
su ¢, allora otteniamo:

0p = iag (1.6.9)
dunque, la corrente sarebbe:
_op
jH=igpd ¢ (1.6.10)
= —i0lpp + i pd (1.6.11)
e la carica:
Q= /d3xj0 (1.6.12)
_ i/d?’x (66 — 6¢). (1.6.13)
Se consideriamo una teoria interagente con:
Lint = —god¢ (1.6.14)
Hins = g0 (1.6.15)

quindi con 3 gambe in ogni vertice, possiamo identificare ¢ con il nucleone
(linea continua con freccia) e o con il pione (linea tratteggiata). Ricordiamo
che per 'espansione in serie di Gell-Mann-Low, in ogni vertice ho un termine
abbiamo un termine (—ig). Scriviamo:

exp{—i / d4met} = Z% (—z’ / d*z Hmt)n (1.6.16)
= Z% <ig/d4x a¢¢>n (1.6.17)

da notare poi che il fattore 1/n! viene sempre cancellato dai modi equivalenti
di scambiare i vertici tra di loro, inoltre, per la teoria di Yukawa non abbiamo
fattori di simmetria per i diagrammi, questo perché i campi in gioco non
possono essere scambiati tra loro.

Alcuni esempi di interazioni sono:?

31 termini di ordine dispari sono nulli perché abbiamo un numero dispari di campi, e
la C sta ad indicare il fatto che escludiamo i diagrammi con le bolle di vuoto.
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e Primo esempio, raffigurato in figura 1.1a é:
(€ T[al b2 53 ¢4]€2) = (0| T[al b2 53 4] |0>C +
+(~ig)? / dz dhw (0] T[G) ¢ B3 61 0(2) 6(2) 8(2) o/(w) d(w) B(w)] [0) o+ ..
(1.6.18)

e Secondo esempio, raffigurato in figura 1.1b é:

braQT [y 2 0504] |Q) = (0| Ty p20504]|0) + - ... (1.6.19)

{__.___+>< l

>l T

|
= ! + l /\
LiBERO ‘
!
l L 2° orbINE J
()
3 x, . L Lt
x, Pes . ,
"~ \\\ X3 \\‘ A
X2
(b)

Figure 1.1: Esempi interazioni teoria o¢g.

I diagrammi di Feynman che entrano nella definizione della matrice S
(ampiezza di probabilitd) sono quelli a cui vengono amputate le gambe es-
terne, ovvero, quelli a cui stiamo eliminando i poli della funzione di Green,
ovvero stiamo trovando I'ampiezza di probabilita (on-shell) come il residuo
della funzione di Green.

Da notare che per tutti i diagrammi al tree-level senza gambe esterne, si
ha un fattore di simmetria finale s = 1.

Proviamo a studiare ’ampiezza di probabilita per un processo di scambio,
raffigurato in figura 1.2.

Scriviamo:
. o [ dY i 4 i
iT = (ig) o 2 (2m)4 6% (py + k — p3) (2m)4 6%(pa — k — pa)
(1.6.20)
ig” 454
i GOl St O (1.6.21)

= My - (2m)* 6*(p1 + p2 — p3 — pa) (1.6.22)
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P *\\iﬁ 3 f’n\ Ps
//\ P 4

Pa P s

Figure 1.2: Processo di scambio

Oovvero:

;2
tg
My =— . 1.6.23
t +_ MQ ( )
Se scambiamo ps3 e ps abbiamo:
. ig® 4 ¢4
iT = T (2m)* 0% (p1 4+ p2 — p3 — pa) (1.6.24)
ovvero: Ly
g9
M, = vyt (1.6.25)

Se vogliamo ritrovare la probabilita, prima sommiamo le ampiezze e poi
ne facciamo il quadrato (altrimenti perdiamo i termini di interferenza); in-
oltre per calcolare I'ampiezza di probabilitd dobbiamo prendere il residuo
considerando particelle on-shell e ignorando le gambe esterne. In sintesi:

| Mior|* = [ My + M, (1.6.26)
= |M,J? + |Mt]2+2Re{Mu Mj} (1.6.27)

da notare che in questo caso i diagrammi hanno tutti segno positivo perché
abbiamo solo scalari (quando avremo anche i fermioni potremmo avere dei
segni relativi).
1.6.1 Caso non relativistico
Osserviamo che:

" =" =" -0 - (- 7)* (1.6.28)

ma nel limite non relativistico abbiamo che p° = p’° e dunque:

;9 ;9 ;92
tg g tg
(pr—p3)? —p® [Py — P32+ p? |+ p?
Se siamo nel limite non relativistico vale I’approssimazione di Born:
~ g2
Vig) = |M| = =— (1.6.30)

i
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ovvero che il modulo di M é la trasformata di Fourier del potenziale. Dunque
troviamo:

d3q eiq’-f
Viz) = 2/ P 1.6.31
W= ] Gy a1 (1031
g2 +1 ) ) efirqcos9
— (27T)2 . d(COSG) o dqq m (1632)
2 o) 2 —irq irq
g q e e
— 2/ dg — 2( = ) (1.6.33)
2m)? Jo T @*+p? \—irg  —irg
2 00
= dg ———— ("1 — 71 1.6.34
o J, Wi e 165
2 +oo irq
g qe
= d 1.6.35
ir(2m)? /_Oo T2+ 2 (1.6:35)

in cui abbiamo indicato r = |Z| e ¢ = |q], arrivati a questo punto possiamo
deformare il cammino ed utilizzare il lemma di Jordan:

2 irq
g qge
V =——=R S 1.6.36
(x) (22 es {q2 oy }q:w ( )
g2
= =—e M 1.6.
o (1.6.37)

che é il potenziale di Yukawa; quindi, g rappresenta per i nucleoni I’equivalente
della carica elettrica, inoltre é un potenziale a corto raggio per particelle mas-
sive (¢ una sorta di generalizzazione del potenziale coulombiano).



Chapter 2

Campo spinoriale

2.1 LSZ
L’equazione del moto per la teoria interagente é:
(i@ — mo)¥ = jo (2.1.1)
che ¢ leggermente diversa al caso della teoria libera in cui avevamo:
Lo = y(id —m)bo ; (i@ — m)apg = 0. (2.1.2)
Possiamo porre:
Jj=Jo+ (m—mo)y (2.1.3)
in modo da poter riscrivere 1’equazione del moto (2.1.1) come:
@-—m)p=j (2.1.4)

la cui soluzione si trova usando la soluzione dell’omogenea, ossia il campo
libero (??), e la funzione di Green, che é il propagatore:

b(x) = VZ o + / A4 Syer(x — ) (1) (2.1.5)

in cui il fattore v/Z tiene conto dell’autointerazione.
Quindi, scelti due stati normalizzati, si ha:

Jim (o] 918) = VZ (a] Y |8) (2.1.6)
e analogamente:
Jim (ol |8) = VZ (o] tout |8) (2.1.7)

dove abbiamo indicato con 1, € Yy 1 campi liberi iniziali e finali in cui
abbiamo solo 'autointerazione; inoltre, le ¢ rappresentano pacchetti d’onda.

17
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Vogliamo studiare:

Sas = (Bla) (2.1.8)

esplicitiamo la presenza di una particella con momento p ed elicita s:
la) — o, (p, 8)) (2.1.9)

per far cid abbiamo bisogno di esprimere gli operatori di creazione e dis-
truzione in funzione dei campi (relazioni di inversione). Ricordo che abbi-
amo:

3 . .
v =3 [ (QW‘;QE (b0 us(p) 7" + dl(p) vep) ™| (21.10)

e che valgono le seguenti relazioni:

s (p) v ur(p) = Us(p) 7" vr(p) = 2" Sor (2.1.11)
s (p) 1° vr(—p) = Vs(p) 7" ur(—p) = 0. (2.1.12)

Possiamo svolgere i conti:

/dgzz:ur(p) Y p(z) eP® = (2.1.13)
3 .
+di(q) vs(g) eiqc} ) Pt (2.1.14)

- [ e @m0 [ e

+di(q) vi(q) ] } (2.1.15)
=% [ Si w ) [uba e EE g -
S +vs(q) di(q) ' FHE 5%(q + p) (2.1.16)
=3 21,, (0 (0) 1" s () bs (9) + s () 7 vs(—p) dl (~p) XCF)
(2.1.17)

= b,(p) (2.1.18)
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analogamente possiamo vedere:

/d3:1c¢(a:) 70 v (p) €P* = (2.1.19)
/d3 (Z/ 2r) 32E (4)Ts(g) €7+
+ds(q)vs(q) e_iqf”]> 70 v, (p) P® (2.1.20)

zz/ e, [ O [0 @ € 4 d0) 70 ] )

(2.1.21)
- Z T (b (=p) T () e CE7 1 d, () Ty (0) | A 0n(p) (21.22)
= cZ (p). (2.1.23)
Dunque abbiamo trovato per le particelle:
bips) = [ ()2 dol) e (2124
bl (p,s) = /d3$¢0(m) 70 ug(p) e P* (2.1.25)
e per le anti-particelle:
d(p,s) = /d?’x o) 70 vy (p) P” (2.1.26)
@i(p.5) = [ @5,p)1 vo(w) e (2.1.27)

Tornando al nostro problema iniziale (2.1.8) possiamo considerare una
particella nello stato iniziale |a) ed ignorare il forward-scattering, e calcolare:

(Bla) = (B b],(p, 5) |&) (2.1.28)
= (8]l (p, s >—biut<p,s> &) (2.1.29)
— (8 / P [ () ~ D)) 7 wslp) 7 [6) (2.1.30)

:\ﬁ ( lm — ggaoo) [ G@ a2 w213

- f d%&{(ﬁ@(@\@) ’yous(p)e_ipx] (2.1.32)

/d4 at 5’¢( )|d>) ’YO us(p) e~ T4
+ (8 (2)[a) 1 us(p) e~ (2.1.33)
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possiamo ricordare che valgono (?7), in particolare la prima, che ci permette
di scrivere:

i7" 9y e =P ug(p) = 7" po e PT uy(p) (2.1.34)
— (7' pi = m) e uy(p) (2.1.35)
= —(iv" 9; — m) e~ " uy(p) (2.1.36)

e dunge possiamo riprendere i nostri conti:

(Blay = \%/d% z‘<ﬁ@(x) 1) 70 Do us(p) e —
— (B8 (' 0 —m) e P ug(p)] (2137)
B \% /d4x [(5@(:}6) @) (in” 50 + iy 52 +m)us(p) efipx}

(2.1.38)

- \& / dtz [<ﬁ| D) G) (09 +m) us(p) e—im] (2.1.39)
Possiamo fare il conto analogo per 'antiparticella iniziale:

(Blor) = < in (D, 5) |cv) (2.1.40)

= (B dlp. ) = dbs (v 5) o) (2.1.41)

:é (i~ tim) [ @) (3] vta) ) e 2142

— f d'z[5,(p) 2 0 ({B[ (@) ) &7+
+0r(p <B‘ ) |a) Ope” ’pm} (2.1.43)

a questo punto possiamo riusare la relazione (??) per scrivere:

U, (p) 7’ B e~ "* = —iv,(p) 1 po e " (2.1.44)
= iv,(p) (7' pi +m) e " (2.1.45)
= 0, (p) (i7" O + m) e " (2.1.46)

che ci fa arrivare a:

(Bla) = \}Z /d4x [:0) (i1 ) ({B| (@) |ay) e~
— (0:(p) (i7" 0i +m) eP7) </B‘ |oz>} (2.1.47)

- ﬁ / @t 7, (p) (i — m) (5] v(@) ) (2.1.48)
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e possiamo vedere che il risultato finale & analogo al caso di particella (2.1.39),
ma con un segno opposto sul termine di derivata.

Ovviamente dovremmo calcolare anche tutte le altre componenti, ma i
conti sono analogi e i risultati complessivi sono:

(8181, (0. 5) o) = + 5 [ bz [ (8] o) (60 -+ m)u(p) 7]
(81 boua(p. ) l0) = =5 [ d'e [T, (p) (i) — m) (5] |o) |
(Bl dL,(p.s) la) =+ [ dla [P 0,(p) (10 —m) (8] |a) |
<

Bl dout(p.5) |0) =~ [ e [ (B[} (19 + m)os(p) 2.
(2.1.49)

+
P -

Se estraiamo una particella dopo aver gia estratto n+m campi, ignorando
come sempre il forward scattering, possiamo inserire un fattore (—1)"*" che
si semplifica per gli scambi:

(Bl Ty (1) - - -V gy (21) - D, (zm) 1B, ) = (2.1.50)
= (BIT[w... ¢l o) = (—=1)™ ™ (8|l T ... ¥] |a) (2.1.51)
= (BITR ... P)(b], = bl,) |a) - (2.1.52)

Infatti, facendo passare b:rmt attraverso tutti i campi esso prende un segno
(—1)™*" che si compensa con il segno scelto, dopodiché facciamo gli stessi
passaggi di prima.

Supponendo di avere n particelle ed m antiparticelle nello stato iniziale
|a) e di avere s particelle e ¢ antiparticelle nello stato finale (3|, si ha che:

(Bisny|tmmy) = (Q [(b1 ... bs)(dr...dp)],,, [(B]...b0)(d]...df,)], 19)
(2.1.53)
che per come abbiamo scritto le (2.1.49) possiamo riordinarle come segue:

Blsny| ammy) = QU (@] .df)in (0] .00 out (0] - 0] )in (] - .. ] Your [€2) -
(2.1.54)
Osserviamo che se t & pari allora possiamo spostare (dJ{ .. .dI Jout & destra
senza probelmi, mentre se ¢ dispari verra fuori un fattore (—1)™"" analoga-
mente per spostare (dJ{ . d,Tn)m ottengo un fattore (—1)"*5. Ora espliciti-
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amo 1 vari pezzetti:

(Blsny|ammy) = (1™ Q| (d] ... dl)in (0] .. ) oue (B .08 )i (d] ... d)out [Q2) =

e ) R ) | EET S IR

—

X Q| Vg sy Q) X

X H dla; (Zgz +m) ug(pi) e P {H/d4xz (igl +m) vg(py) et P 961}_
(2.1.55)

Notiamo, e teniamo a mente, che non é segnato esplicitamente, ma gli
elementi con la stessa sommatoria hanno indici spinoriali legati, nell’ordine
in cui i vari elementi sono scritti:

(Vi (22) () (0D = 1)y () (O Tthey (20) (- - )y (1) (- -+ )]]0) X
X (i@ +m)aay (- Yty (z1)( )

in cui gli indici (a1,71,...) rappresentano gli indici del prodotto tra gli
spinori.

Usando lo stesso abuso di notazione che abbiamo osservato per il caso
scalare (ovvero utilizziamo G sia per indicare la funzione di Green, sia la

funzione di Green amputata), possiamo scrivere la definizione delle funzioni
di Grenn:

G =70,y (T 1 P ] 1) wiv (2.1.56)

1 d45L‘j e_il’j Tj - d433 6+ipk T - d4$i e—il’i o
L R L TE b
Il fnene o
= (—1 n-+t n+m+s+t mn { s ; }
(1 (vZ) {H kHlpﬁm y
g {gpz+m} {H]Z)l —m} < (s,t }a(”m» (2.1.58)

=1

(2.1.57)
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che troviamo grazie alla formula LSZ. La funzione di correlazione/Green am-
putata si ottiene eliminando i propagatori delle gambe esterne dalla funzione
di Green nello spazio dei momenti:

¢ =&Y T Ar:). (2.1.59)

i=1
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Chapter 3

Campo vettoriale

3.1 Esempio annichilazione di fermioni
I riferimenti sono p. 131-136 del Peskin e Schroeder [4].

Consideriamo la QED, dunque una lagrangiana:
Ez—e@’yul/uél“ (3.1.1)
e studiamo il processo:
e +et — p+put

in cui abbiamo solo il canale s e siccome m,, ~ 200m, trascuriamo solo la
massa dell’elettrone. Il processo lo possiamo vedere in figura 3.1.

e = . 7

P4
canale s U

Figure 3.1: Raffigurazione canale s processo e™ +e™ — = + pt.

Utilizziamo le regole di Feynman per la QED per scrivere 1’elemento di

25
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matrice S ridotta:

M (2m)* 6(p1 + po — p3 — pa) = (3.1.2)
4 inHv
= [@(pz) (—ieyu) U(m)] /(;l; 24 [ﬂ(ps) (—ievy) v(m)] X
x (2m)* 6(k — p3 — pa) (2m)* 6(p1 + p2 — k) (3.1.3)
—ie?
= m (V2 T up) (a3 - " - v4) (277)4 d(p1 + p2 — p3 — pa).
(3.1.4)
Dunque abbiamo:
M =M, = it (T2 -y - ur) (U3 - " - va) (3.1.5)

e possiamo procedere con il calcolo della sezione d’urto non polarizzata me-
diando sulle polarizzazioni iniziali e sommando su quelle finali:

1
Mol =3 > IM;[? (3.1.6)
spin
oA
= 4732 Z(U2 Y Ul) (ﬂ3 ' ’YM : U4) (U4 : ’YV : U3) (ﬂl Yoo ’UQ) (3.1.7)
spin
64
= 4782 Tr{%i (751 + me) Yv (7’2 - me)} X
x ey + my) 7 (p, — i)} (318)
4
e
~ 47821)? plg D3,p P40 X
X Te{y a8} Tr{y"97" 7" = mi 7"y} (3.1.9)
464 o B
= 5 PY P2 P3pPao [Mua s + M va — N Tas] X
X [nﬂp ,,71/0 + nucr nup . nuu npo . mi n/u/] (3.1.10)
8 et

= 5 [(P1-p3) (P2 pa) + (D1 pa) (P2 p3) + 0 (p1 - p2)] (3.1.11)
ora, notando che nel sistema di riferimento del centro di massa, con m, ~ 0,
abbiamo:

(3.1.12)

p1=(E,E2) ; p2=(F,-E2)
p3=(E.k) ; pi=(FE —Fk)

in cui:

k-2=k| cos = \/ B —m2 cost (3.1.13)
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27
allora continuando i conti
2 864 2 9 2 2
|M,|* = 25 <E —E\/E*—m2 cos@) +
2
+ (E2+E1/E2—mg cosa) +2Em? (3.1.14)
2 2
=3 1-— 1—ﬁc050 + |1+ 1—E2 cosf +2E2
(3.1.15)
m2 m? |
= 1+E—‘2‘+ fE—g cos® 6 (3.1.16)
Calcoliamo anche la sezione d’urto
dQ E1E2|171—172| 647T2E3 o
cm
osserviamo che: - .
. N b1 b2
— = 2 3.1.18
|1 — o B B ( )
dunque:
95| Eem VI 2 _ 1o M (3.1.19)
E1 EQ"Ul —’Ug‘ E2 o

per semplicita possiamo porre a = m?/E?, x = cosf e calcolare la sezione
d’urto totale:

- dm/1——
o 647T2E2 / B2

W/ dx 1—a|:1+a+(1_a)x2:|
¢! V1 2(1 + )+2(1 )
= ———0 —a a)+-(1—-a
32w E2 3
2
N PO PO Sl
127 B2, E2 2 F2
4 2 2 2
I L) 1+1@
3E2 E?2 2 F2

2

mz m; )
1+ﬁ+ 1_ﬁ cos“ 0| (3.1.20)

(3.1.21)

(3.1.22)

(3.1.23)

(3.1.24)
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Se avessimo trascurato tutte le masse avremmo ottenuto:

IM|? = 2;24 (% + u?) (3.1.25)
tramite la simmetria di crossing possiamo studiare:

e +pu — e +pu-

da cul otteniamo: .
2
M2 = Tg (52 + u?). (3.1.26)

Se avessimo studiato:
e +e — e +e

allora avremmo avuro anche il canale u, oltre il canale t, questo perché le
particelle finali sono identiche, per cui possiamo scambiarne gli impulsi e
dobbiamo studiare:

1
(M2 =2 > My + M2 (3.1.27)
spin
1
= M + M+ 72 Re{MtMg}. (3.1.28)
spin

3.2 Esempio del Bhabha scattering

I riferimenti sono p. 355 es. 59.2 dello Srednicki [7] e p. 192 es. 5.2 del
Peskin e Schroeder [4].

Consideriamo la QED con la lagrangiana:
L=—epy,p A (3.2.1)
e studiamo il processo:
e et — e Fet

in cui abbiamo sia il canale s (di annichilazione) che il canale ¢ (di scambio),
raffigurati in figura 3.2.

A noi interessa riordinare gli elementi che troviamo nella matrice S come
Y1, formando il propagatore Sg(z—y) = (0| T[¢(x)1)] |0), ma per fare questo
dobbiamo ricordarci:

{0,y = {,4} =0 (3.2.2)
{v(t,2),¢(t,9)} = 6(F - 7). (3.2.3)
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W

Y

. ] r £ s a
canale s € < < (

canale t

Figure 3.2: Raffigurazione canale s e t processo e~ + e — e~ +et.

Contraendo troviamo un segno relativo e ’elemento di matrice S ridotta
complessivo é dato da M = My — M;:

M, = [5(p2) (i€ ) u(pr)] ZZ# (ps) (~ie ) v(pa)] (3.2.4)
_ —z:? (B2 - - 1) (s - 7 - 1) e
My = [w(ps) (—iey) u(pr)| iZ;‘V W(p2) (—ie ) v(py)] (3.2.6)
I g ) (B3P o). (3.2.7)

t
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Mediamo sulle polarizzazioni iniziali e sommiamo su quelle finali:

IM[* = iz | M |2 (3.2.8)
spin
64
= 482 Z(@ Y- ur) (@3- vg) (Vg -y - ug) (U -y - v2) (3.2.9)
64
=72 [(@)a (Vw)as (u1)g - (T1)y (1)rs (vz)(s] X
X |:<ﬂ3)P (7“)00 (04)0 : (64)7 (7V)Te (US)e} (3.2.10)
64
= 13 2 [(Wdas (B, + M) (1) (B, = mesa] X
X {(7‘%0 (B, — me)ar (V" )re (Pg + me)gp} (3.2.11)
64
=12 Tr{fyu(pl + me) 1 (P, — me)} Tr{’y“(}/)3 +me) V" (p, — me)}
(3.2.12)
64
~ o2 P P4 P3.pPao Tr{vams} Tr{v"177"77} (3.2.13)
62
= % P pg P3,p P4,0 |:77,ua N + NMuB Mva — Nuw naﬁ} X
X [77“” 0"+t =t 77””} (3.2.14)
64
= % [(pl +p3) (P2 - pa) + (1 - pa) (P2 -pg)} (3.2.15)
= 2:24 (t + %), (3.2.16)

Possiamo ricavare il canale ¢ usando la simmetria di crossing:

2 2¢* 2 2
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Studiamo ora il termine misto:

M| = i 3 Re{MS Mj} (3.2.18)
spin
64
=1t > (@2 ua) (T A" - va) (a7 - v2) (T -y - u3)
spin
(3.2.19)
64
= {3, + ) (B ) VB, — ) 7 By — ) |
(3.2.20)
e! O, A Bt Pl AT
= o7 PLaP3sPippro Tr{wy 8% el i e } (3.2.21)

dobbiamo a questo punto ricordarci delle relazioni per le matrici v, che puoi
non solo vedere nell’Appendice 77, ma soprattutto nelle note del corso di
Introduzione alla Teoria Quantistica dei Campi. Vediamo infatti:

VP, = An™ | Ry, = =29 Py (3.2.22)
per cui abbiamo:
Tr{%ﬁ“(%vﬂ 7“7"7“)7"} = =2 Tr{vw‘“(v"v“vﬂ )7"} (3.2.23)
— gy Tr{’yﬁfya} (3.2.24)
= —329%P %7, (3.2.25)
Tornando ai nostri conti:
Ret
(M| = T (p1 - pa) (p2 - p3) (3.2.26)
2 4
= -2 2 (3.2.27)
st
Complessivamente abbiamo:
| Miot|? = |M|* 4+ | My * — 2| Mg |? (3.2.28)
2 $2 1 1\?
=2¢t Zta" 2 <s+t) (3.2.29)

Se avessimo studiato il processo:
e +e — e +e

avremmo avuto due diagrammi di scambio (canale ¢ e canale u) in quanto le
particelle degli stati finali sono identiche e quindi possiamo scambiarne gli
impulsi.
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3.3 Esempio sul segno di un loop di fermioni

Guardando la fugura 3.3 scriviamo:

(O T[A (1) Ay (22)]|0) = (—ie)Q/d4wd4y (O Ap(a1) Ay (z2) d(x) X

X A(x) (x) P(y) Aly) ¥(y) 0) (3.3.1)
= A Ao Ay Ay, (3.3.2)

In generale troviamo che un loop con n fotoni esterni che abbia solo fermioni
interni ha segno negativo:

(O] T[Ayy (1) - .. Ay (22)]10) = (—ie)? /d4y1 odby, X

X (0] Ay, (21) -+ Apy () (y1) Alyr) Y (y1) P(y2) X
X A(y2) (y2) - .. (yn) Alyn) ¥(yn) [0) (3.3.3)

/.A

Figure 3.3: Raffigurazione loop di fermioni.

3.4 Osservazione sulla teoria di Yang-Mills

Riprendiamo ’esempio del campo spinoriale ad N componenti, in aggiunta
al campo vettoriale, la lagrangiana completa é:

|
£:—1F5 Fo, 4+ (i) —m) ¥ (3.4.1)

in cui ricordiamo (?7?), inoltre per avere invarianza locale il campo A deve
trasformare come:

gA, — gA, =—iU(9,U") + gUAU". (3.4.2)

Se riscriviamo esplicitando i generatori abbiamo in una trasformazione in-
finitesima e:

gAL =gA, — 0w T +igw® [T, A,] (3.4.3)
=gAu — Dy (w*T7) (3.4.4)
=gA,+iD, U (3.4.5)
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dove abbiamo utilizzato la derivata covariante in rappresentazione aggiunta
(77). Esplicitando la lagrangiana notiamo che il termine di interazione dato
da:

Lint = —g ¥ (7, A") ¥ (3.4.6)

come in Maxwell.
Se invece consideriamo un campo scalare complesso:

L= (0,0) (0¢) +m? gl (3.4.7)
quando richiediamo l'invarianza di fase locale tramite la derivata covariante:
D, =0,+1iA, (3.4.8)
otteniamo:
1
L=—1Fu FM — (9,0 +iAu0) (040 + iAFT) +m? ¢ ¢l (3.4.9)

Dunque, abbiamo dei termini di interazioni di tipo derivativo, in cui un
campo (A) interagisce con la derivata di un altro campo (¢).

Le interazioni derivative non sono rare, ma si trattano meglio usando i
path integrals (vedi il capitolo §77).
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Chapter 4

Integrali funzionali

4.1 Legame tra path integral e prodotto T-ordinato
nel vuoto

L’ampiezza di transizione generica é data da:

(01¢) = [ daoday (wlas) arlao) (aole) (111)
= /dqo dgy ¢*(qr) ¢(q0) {arlqo) (4.1.2)
ma a noi interessa studiare il ground state:
©00) = lm [ daodgy e o) (artslanto) . (413
to — —o0
ty — +00

Sapendo che ¥, (q) = (¢|n) e supponendo Ejy = 0, allora il ground state dello
stato finale ed iniziale sono:

g0 to) = e 1 10 |go) (4.1.4)
= et 0N " In) (n|qo) (4.1.5)
n>0

=S et Byt g n) — i(q) 10)  (4.1.6)

t——oo(1—ie)

n>0
(arts| = (ap| e 21 (4.1.7)
= e n 1y " (ggIn) (n] (4.1.8)
n>0
= (n| e w5 $u(gy) — (0] $o(gy) (4.1.9)
n>0 t——+o0(1—ie)

35
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possiamo moltiplicare per una funzione d’onda arbitraria x(qo), per cui
richiediamo (x|0) # 0, ed integriamo:

/ daox(ao) lote)  — / dgo x(q0) ¥ (q0) [0) = (x]0) (0

t——oo(1—ie)

(4.1.10)
se facciamo la stessa cosa per gli stati finali con una funzione d’onda £(gy),
allora possiamo scrivere il ground state come (riassorbendo x(qo) e £(gy)
nella costante di normalizzazione):

000y = i L dpo ... d
tf — 400
.
xxlan) €Gap) ep{i [Cat (i - fram) b @)

N/D /D exp{ /+Oodt (pq‘—H(q,p))} (4.1.12)

pertanto, aggiungendo i termini di sorgente, abbiamo:

(00}, = X[/Dq D, exp{; /dt (pq' — H(q,p) + fq+gp) } (4.1.13)

Possiamo supporre:
H = Hy+ H;y, (4114)

e per cui:

0]0 /D D, exp{ /dt (pcj—Ho —Hmt—i-fq—i-gp)} (4.1.15)

sviluppando il termine di interazione in serie di potenze:

exp{h /dtﬂmt} chmq"pm (4.1.16)

dunque abbiamo:
o 5’”
_ n+m
(00) ;5 =D Com (—ih) 3 57
-/Dqu exp{h /dt (p(j—Hg—l—fq—i—gp>} (4.1.18)
10 0
—exp{h /dtht<h5f w3 >}X
X /Dqu exp{h /dt (p(j—H0+fq+gp>} (4.1.19)

se ponessimo H;,+ — AH;,+ con X\ piccolo, allora potremmo sviluppare per-
turbativamente il primo termine.

(4.1.17)
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4.2 Spazio delle coordinate

Questo conto lo possiamo fare anche nello spazio delle coordinate, integriamo
il primo termine della lagrangiana per parti:

LJ:LO+J¢:—%¢ (O+m?) ¢+ J¢ (4.2.1)
e poi completiamo il quadrato:
1 - _
Ly=-3 [0—J @+m) 7| (0+m?) [o-J (@+m?) ']+
+ % J(@+m?) T (422)

perd possiamo ricordarci che l'inverso di un operatore é la sua funzione di
Green:

(o+ m?) Az —y) = —i oz —y) (4.2.3)
che abbiamo gia calcolato ed ¢ uguale al propagatore (?7) e quindi:
1
Zl =« /D¢ exp{i(Lo + J¢)} (4.2.4)
1

4.3 Rotazione di Wick
Facendo la rotazione di Wick:
To = —iXg (4.3.1)

ovviamente tutte le quantitd si modificano, ma si pud vedere I’Appendice
77 per le relazioni. Notiamo che abbiamo una trasformazione analoga anche
per 'impulso:

ko= —ik¥ (4.3.2)
che implica:
k= —k%, (4.3.3)
e che:
atp, =Bt —k-& (4.3.4)
= (—iEp) (—it) — k- & (4.3.5)
= -, p}, (4.3.6)

in cui possiamo mettere entrambi gli indici bassi poiché nello spazio euclideo
non cambia nulla la posizione degli indici.
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Continuiamo i nostri conti:

I=iS+i(pJ) (4.3.7)
= —Sp+(¢J)E (4.3.8)
= ; /d%E | = 046 846 — m?6? + 279 (4.3.9)
4 ap ~
— 5 [ aton [ 28 SB[ (0], - ) ) 016+
+0(p) J(0') + q3<p ) J(p)] i 4 (4.3.10)
4
=5 / éf:f [ (pupu +m?) ¢(p) 6(—p) + d(p) J(—p) + &(—p) J (p)
(4.3.11)
possiamo porre per brevita ¢(+p) = ¢4, ma anche:
K =—(p*+m? (4.3.12)
e cambiamo variabile:
o(p) — dlp)— K ' J(p) (4.3.13)
continuando i conti:
d*p 1 =
3 [ e ] o 2
+ [q3+ _ K JJ J_+ [&_ K J_} J+} (4.3.14)
4
=5 | Tt [K 0w 3~ K7 T (=) (1315
4 ez’p(:rf )
— _S, —;/d“xE d4yE/ ?Qfﬁ [J(aj) J(y) W (4.3.16)
4y oip(z—y)
= -Sp+ % /d4xE dYyp J(x) J(y) / ?271:;1 e (4.3.17)
da cui concludiamo:
ZE[J] = e Wold] = exp{; (J(2) J(y) A — y)>m7y}. (4.3.18)

2

Se torniamo nello spazio di Minkowski, richiedendo m? — m? — ie per la

convergenza, otteniamo:

. 1 4 4 d*p i e—p(@—y)
I_zS+2/d:cdy/(27T)4 J(x) I(y) - |

p2 —m?2 +ie

(4.3.19)
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Nota di E. Chiarotto (tra l'altro il 9 febbraio 2023): Non mi torna il segno,
dovrebbe essere —1/2, ma il passaggio prima ¢ uguale a quello che ha scritto
il professore.

4.4 Esempio \¢*

Dopo la rinormalizzazione, ’energia libera W ha solo diagrammi in cui tutte
le particelle interagiscono tra di loro e collegate alle n gambe esterne:

[e’s) _1) .
WJ] = Zl ( n!) (Ji .o TGy (4.4.1)
invertendo troviamo:
G = (—1) LW{J} (4.4.2)
¢ 0J1 ... 0J, o

Puoi vedere i vari termini delle funzioni di Green nella figura 4.1.

e : 8
SN
60-)(“':7') D oe—e o+ O + \:} + O O + .——8———«

%% &y a0 (1) (A»
et S+ T v
o
39) 3%) %)
o : _} /
i)
Figure 4.1

Ciascuno ¢ un esempio di tanti processi equivalenti. Ad esempio quelli
in figura 4.2.

Quindi ogni vertice ¢ associato a —A (siamo nell’euclideo), inoltre per
ogni vertice (che non abbia solo gambe esterne) dobbiamo fare degli integrali
perché le derivate:

gj; = 5(331 — 1‘2) (443)

ci permettono di semplificare soltanto gli integrali delle gambe esterne.
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X

Figure 4.2

\

Consideriamo il termine di ordine A in G® e lo chiamiamo (A), mentre
quello in ordine A? lo chiamiamo (B):

(A) = —% /d4x A(z) —x) Alr — x2) Az — ) (4.4.4)
A2 4, 4 3
(B) = ey /d rd*y Az —z) A%(x — y) Ay — x2). (4.4.5)

In §9 avevamo un termine:

1
3 (Jo Daz A3, Ay Jy)ay (4.4.6)
che se derivato diventa:

2
22 5 (Agz Aiy Ayp)zy- (4.4.7)

Ovviamente possiamo rifare il conto nello spazio degli impulsi:

(4) = -2 / dy / dpy /d4p2 / AUk iem (m0) jeim @)
2 2m* ) @2em* ) @2n)* pt+m2  p3+m? k2+m?

(4.4.8)
A d4p1 ip1 1 d4p2 —1ip2 T2 4 ¢4
_ - 1p1 T p2 T 2 5 _
2 e e e )
i i d*k i
449
p?+m2p§+m2/(2ﬂ)4k2+m2 49
vedendo cosi:
_ A i i d*k i
G — 254 p, — . (4.4.10
(p1,p2) 9 (p1 — p2) p%+m2 p%-i—mQ /(2%)4 k2 +m?2 ( )



Chapter 5

Il modello standard

Vediamo in questo capitolo la trattazione del modello standard delle parti-
celle elementari.

5.1 La lagrangiana di Fermi

Per la QED sappiamo di avere:

ﬁQED:E(ia—eA—I—m)LZJ—iFMVF”V (5.1.1)

ma le particelle possono interagire anche tramite la forza debole e la forza
forte. La descrizione di Fermi per la forza debole descrive l'interazione
tramite la corrente:

_Gr
V2

con all’interno i termini che chiamiamo corrente leptonica e corrente
adronica, la costante di Fermi é:

Lp JHJL o con JH=LF4 HF (5.1.2)

Gr =1.166- 107> GeV 2. (5.1.3)
Le due correnti vengono costruite in analogia con la QED:
LF ~ HF ~ 1) (Gy VF — Ga AP) o (5.1.4)

dove V' ¢ la corrente vettoriale ed A ¢ la corrente assiale A¥* ~ y* ~5, il fatto
che ci sia V — A é legato al fatto che solo la componente Left partecipa
all’interazione.

Notiamo che siccome vale:

() =7 , (FT=1"9#" , (=1 (5.1.5)

41
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abbiamo che:

Ju =X (1 —75)¢& (5.1.6)

= ]L = fT (1 — 7;[) fyL (70)’[ X (5.1.7)
=& (1 =) (7" ) x (5.1.8)

=& () (1= 5) x (5.1.9)

=& (=) x. (5.1.10)

Le costanti Gy , G4 sono diverse in base al tipo di particella che inter-
agisce, sperimentalmente si trova Gy = G4 = 1 per le particelle elementar-
i/puntiformi. Tuttavia questa teoria ¢ valida anche per protoni e neutroni
(entro un certo range di energia) con Gy ~ 1, G4 = a ~ 1.24.

Scriviamo:

Lp~ ?/g (ue Y (1=s) Ve> (ew (1 —=15) 6>+

+ ?/g (pv“ (1- a%)n) (ew (1 —’75)’/) (5.1.11)

dove v, ¢ lo spinore di Dirac per il neutrino elettronico, mentre e é il campo
di Dirac per l’elettrone, e la presenza della 5 esprime il fatto che non viene
conservata la parita.

Se facciamo ’analisi dimensionale:

[S]=[£]-L* =1 (5.1.12)
dunque:

e Per gli spinori:
L=19 (i —m) ¢ (5.1.13)

dunque:

che implica:

[W] = L~%2.
e Per gli sclari:
L= 5 (00) (0#9) — 5 m* & (5.1.14)
e per i bosoni vettori:
L= —iF“”FW (5.1.15)

dunque:

che implica:
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Cio implica che la costante di accoppiamento g = e della QED sia adimen-
sionale:

L =gl WP A =g L L =L = [g]=1. (5.1.16)
Mentre nella lagrangiana di Fermi:
L] = [Grl[v]* = [Gp] L0 = L™* (5.1.17)

OovVvero:

[Gr]=L?= M2 (5.1.18)

Vedremo che G é dimensionale perché nasconde al suo interno il propaga-
tore dei bosoni vettori a basse energia.

5.1.1 Validita della teoria di Fermi

Nel limite di basse energie la teoria di Fermi é valida, mentre ad alte energie
o cresce con 'energia del centro di massa e la teoria non & piil unitaria. Se
studiamo l’'interazione, vedi in particolare il processo:

e+rv. — e+,

nel diagramma in figura 5.1, allora abbiamo 4 gambe esterne e I’elemento di
matrice S ridotta é:

M = —if/g (?2 (1 —~7) 1/4) (ﬂg’yu (a—b’yg))ul) (5.1.19)

{)

I/'(_, - l/v

Figure 5.1: Raffigurazione processo ¢ + 7, — e + V..
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e dunque:

1
IM? = 1 > M (5.1.20)

spin

— GS% Z (32 (1 — 'y5) V4> <?4 v (1 — 75) Vg) X

spin

x (ﬂ?’ Yu (@ —b7s) “1) (ﬂl Vv (a—b7s) u?,) (5.1.21)
= Gg% Tr{% +me) v (a—bys) (P, +me) Y (a — b75)} x

% Tr{% = mu) 7" (1 =5) (P — 1) " (1 = 75)} (5.1.22)
~ % Tr{(pl)% (a = bs) (B) o (a — b%)} y

x Ted (p) 7" (1 5) (1,) 7" (1 —5)} (5.1.23)
= GS% (p1)* (93)° (92)p (P)o Tr{7a v ¥8 Y (@ = b75)? } X

X Tr{y7 7" " " (1 = 75)"} (5.1.24)
= Gg% (1) (23)° (P2)p (P)o Tr{va v v8 Y (677 — 2 b5) } X

X Tr{y” 97 2"9" (2 = 295)} (5.1.25)

= 4GH (01)° (19)” (2) (Pa)o | (@ + %) (M M+ T Mo — s ) +

+ 2iab 6(1”5”} {77”” Pt + 07" — 0P ., + ie‘”’p“} (5.1.26)

possiamo analizzare i termini separatamente:

(7701/ 77’)“ + 770# 77’"/ - 770’) 77#1/) <77a1/ Urem + Nawp MBy — Nap "7/11/) =2 (52 52’ + 55 5%)
iy = s =2 (153 215) =2 (125

(77a1/ N8 + No Moy — T 77#!/) VP — (nau np# + 170# 77pl/ _ nap nMV) Eavfuy = 0

in cui I'ultima equazione € dovuta al fatto che ¢ ¢ anti-simmetrico per scambio
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di p, v, mentre il termine tra parentesi é simmetrico. Continuando i conti:

= 8GH (p1)" (pa)” (p2), (pa)s (0 + %) (8765 + 62,65 ) -

— 2ab (5; 5 — 8% 55)} (5.1.27)
=8G% [(GQ +b° — 2ab) (p1 - pa) (p2 - p3)+
+ (0% + B2+ 2b) (p1 - p2) (ps - )] (5.1.28)
— 202 [(a—b)2u2 + (a+b)252} (5.1.29)
=2G% 52 [i (a —b)* (1 + cos0)* + (a+b)2]. (5.1.30)
La sezione d’urto totale é:
1 2
= — .1.31
0= d(cos @) | M| (5.1.31)
2G2F S
= s f(a,b) (5.1.32)
x 5= (p1 + p2)* (5.1.33)

dunque, questa teoria non é consistente ad alte energie perché le probabilita
crescono in maniera indefinita, tuttavia ¢ una buona approssimazione ad
energia dell’ordine dell’energia di Fermi. L’unica dipendenza del momento
in questa teoria viene fuori dalla media sulle polarizzazioni, per avere un
andamento pili ragionevole bisogna introdurre delle particelle che mediano
I'interazione, tuttavia queste interazioni sono a corto raggio (~ 1071° m),
quindi non possiamo usare i fotoni come nella QED ma dobbiamo usare una
particella massiva e il potenziale di Yukawa:

1
Vo~ e ™ (5.1.34)

r

dove m ¢é la massa della particella. Quindi dobbiamo introdurre un campo
massivo che si accoppi con la corrente di Fermi:

Ju B! (5.1.35)
dove il campo B ha un propagatore:
! (5.1.36)
) 1.
e cio fa in modo che la probabilitd non cresca troppo ad alte energie, mentre
a basse energie il campo B non si propaga:
1 1

—_— . 5.1.37
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Si potrebbe pensare di introdurre un campo vettore massivo usando la la-
grangiana di Proca:

1
4

che pero non é invariante di gauge e questo fa si che la teoria non sia rinor-
malizzabile; per evitare questo problema si usa il meccanismo di Higgs.

2
Lp Fl, F™ 4 % B, B" (5.1.38)

5.2 Rottura spontanea di simmetria (Wigner e Nambu-
Goto)

In Meccanica Quantistica una simmetria ¢ una mappa:
la) — |a)=U|a) (5.2.1)
tale per cui:
(alB) = (/|B) (5.2.2)

quindi U dev’essere un operatore unitario. Inoltre ricordiamo che per il
. .. . . vata:
teorema di Noether ogni simmetria corrisponde una corrente conservata

58 ~ /d4x (0,4") =0 (5.2.3)
da cul ricaviamo la carica conservata:
Q" = /d4:cj0a (5.2.4)
inoltre abbiamo che:
[H,Q% =]0 (5.2.5)
e per questo possiamo esprimere:
U=ed"9", (5.2.6)

Una simmetria pud agire su una teoria in due modi diversi in base a come
agisce sul vuoto: realizzazione alla Wigner o realizzazione di Nambu-Goto.
Per Wigner abbiamo:

Ul0)y=10) , Qol0)=0 (5.2.7)

pertanto tutto lo spettro é caratterizzato da multipletti del gruppo di simme-
tria ovvero di @4, quindi per esempio se abbiamo due stati degeneri allora:

) = Qa |} (5.2.8)
Per Nambu-Goto invece abbiamo:
U |0) # |0) (5.2.9)

N

cioé il vuoto non é invariante, e con un abuso di notazione si dice che la
simmetria é spontaneamente rotta (U continua a commutare con H).



5.3. Rottura della simmetria e spettro di massa 47

5.3 Rottura della simmetria e spettro di massa
Consideriamo un campo reale scalare ¢* con a = {1,2} e:
1
L= 3 0u@® 0" — V(") (5.3.1)
dunque per cui abbiamo:
_ 1 ‘a 2 1 a2 a
H=3(9) +35 (Vo) +V(9) (5.3.2)

tuttavia la teoria dev’essere invariante di Poincaré (Lorentz e traslazioni
nello spazio-tempo), quindi il vuoto della teoria ¢ dato dalla condizione che
estremizza del potenziale, cioé dobbiamo avere:

oV
967 = (5.3.3)

Studiamo le conseguenze di queste due realizzazioni per lo spettro di massa
della teoria. Nella lagrangiana non abbiamo scritto un termine di massa
esplicito ma lo ritroviamo quando espandiamo in un intorno del vuoto:

ov . . w1 0%V
8¢a (¢) 7<¢ >)+§8¢aa¢b

(6" = (67) (0"~ (o")
()
(5.3.4)

la derivata prima ¢ nulla nel vuoto, il termine costante ¢ I’energia di punto
zero che puo essere ignorata e dunque rimane solamente:

V(e?) = V({¢?) +

0%V
M2 = ——— : (5.3.5)
W 9¢rOgh
$°0¢ ¢*=(¢")
Consideriamo una trasformazione:
6¢% = RY ¢° (5.3.6)
di SO(2), per la quale il potenziale trasforma con:
oV . OV
oV = 990 0Pt = g7 Ry ¢°. (5.3.7)
Tuttavia se ipotizziamo che £ sia invariante di SO(2), abbiamo che:
ov
oV=|——R} =0 5.3.8
(Gma) (539
quindi:
o [0V 0%V ov
R¢ b) = ( R (¢%) + Ry 55;) 5.3.9
a¢c (ad)a b ¢ @ a¢aa¢c b <¢ > a¢a b (o ( )
= Mz, Rj (¢v) (5.3.10)

—0. (5.3.11)
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Dunque, ricordando che la variazione del vuoto é:
3(¢") = a Rj () (5.3.12)
possiamo avere:

e La realizzazione alla Wigner se:
(") R, {dp) = 0 (5.3.13)
che implica la preservazione del vuoto:
U |0) = 10) (5.3.14)
che non da informazioni aggiuntive sulle particelle.

e La realizzazione alla Nambu-Goto se:
5(¢") R (dw) # 0 (5.3.15)
che implica la "rottura” del vuoto:
U |0) = |0) (5.3.16)

in questo caso la matrice di massa M 317 ha un autovalore nullo, dunque
esiste sempre una particella a massa nulla, che prende il nome di
bosone di Goldstone.

5.4 Teorema di Goldstone

Sia G un gruppo di simmetria (dimG = n4 +n,) con: n, generatori H* che
preservano il vuoto (H®)¢ (¢?) = 0 (Wigner); na generatori "rotti" K che
non preservano il vuoto (K4)¢ (¢?) # 0 (Nambu-Got). Per ognuno di questi
generatori rotti esiste un autovettore:

A A b
v = (K7)5 (¢7) (5.4.1)
calcolato rispetto ad M2, con autovalore nullo, ovvero per cui abbiamo:

M2 vl =0 (5.4.2)
quindi a ciascun generatore rotto associamo una particella a massa nulla,
detta bosone di Goldstone.

Nota. non vale l'inverso di questo teorema, per esempio se abbiamo
V =0 ¢ = cost e questo restituisce un vuoto, abbiamo delle simmetrie e
abbiamo delle particelle mass-less, ma questo & una conseguenza del fatto
che V =0, non c’entra con Goldstone.
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Figure 5.2

5.5 Esempio di rottura della simmetria

I riferimenti sono p. 348 del Peskin [4].

Studiamo la lagrangiana:

1
£=3 b;:z (a,@b) (aﬂqsb) — V(¢ (5.5.1)
in cui scegliamo:
2
ay _ A Loy b 2
V(o) = Z§¢¢—a . (5.5.2)

b=1,2

Passiamo ad un campo complesso:

- ¢1 +Z¢2
¢ = 5 (5.5.3)
ed otteniamo: \ )
L =0,00"9" - (qsqu - a2> (5.5.4)

e possiamo osservare che abbiamo un’invarianza di fase globale. Se vogliamo
calcolare il vuoto della teoria dobbiamo studiare:

ov ov

5= =0 (5.5.5)

da cui otteniamo:

(¢) = (¢T) =a (5.5.6)
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oppure:
(¢) = (¢1) =0. (5.5.7)
Se abbiamo a? < 0 abbiamo un’uncia soluzione:
(¢) =0 (5.5.8)
dunque:
2 0 _CLQ 2
M= = 2 0 , detM*“ £ 0. (5.5.9)

Se a? > 0 abbiamo un massimo in (¢) = 0 ed un minimo in (@) = a, infatti
se andiamo a studiare la matrice di massa abbiamo:

—2
BV =¢ — a (5.5.10)
a%v = — d® (5.5.11)
8;$V22¢$:2¢$—a2 —  a? (5.5.12)
dunque abbiamo:
2 2
M? = (Zz ZQ> . detM?=0 (5.5.13)

quindi uno degli autovalori é nullo, dunque il vuoto rompe spontaneamente
la simmetria, infatti in questo caso il vuoto realizza la simmetria alla Nambu-
Goto.

5.5.1 Sostituzione 1

Prendendo (5.5.4) studiamo:

¢ =pe? (5.5.14)
per cui abbiamo:
Oup = (Bup +1ipd,0) " (5.5.15)
up’ = (Oup —ipd,0) e (5.5.16)
da cui: \
L = 0,pd"p+ p* 0,00"0 — 1 (p? — a?)? (5.5.17)

il potenziale non dipende pit da € (che puo essere il bosone di Goldstone) e
per cui:
— == — =0 5.5.18
5o~ 5= (5519

che implica:

(p) = (massimo) (5.5.19)
(p) =po=*a (minimo). (5.5.20)
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Espandendo il potenziale intorno al vuoto, ignorando I’energia di punto zero,
abbiamo:

1 9%V
Vo)~ 5 =5 (0= p0)? (5.5.21)
o
A
=5 a® (p— po)*. (5.5.22)
Se poniamo £ = p — pg otteniamo:
L= 0,80"E + (€ + po)? 9,000 — %aQ 4., (5.5.23)

se trascuriamo anche i termini di accoppiamento (infatti per determinare lo
spettro di massa ci bastano i termini quadratici) abbiamo che:

L = 0,80"¢ + p} 0,00"0 — %aQ 4., (5.5.24)

quindi 6 é il bosone di Goldstone, mentre £ ¢ un campo massivo. Infine,
dobbiamo rinormalizzare i due campi:

1 1
— = ) 0 — —=0 5.5.25
3 \/55 Po 7 ( )
in questo modo otteniamo:
1 1 A 9.9
L=3 E0ME + 3 00010 — LRI (5.5.26)

5.5.2 Sostituzione 2

Ripartendo da (5.5.4), ma trasliamo rispetto al vuoto:

£+i0
= + , = 5.5.27
¢ 7 (¢) (¢) =a ( )
in questo modo otteniamo:
1 1 A 2
L= 300"+ 50,000 -~ (€2 + 6% +2v2a) (5.5.28)
1 1 A 2
=5 00"+ 5 0u00"0 — (54 +0* +8a%€% +26%60% + 4v2a 63 +4\/§a£02>
(5.5.29)
dunque ¢ ha massa:
mg = 22 (5.5.30)

6
mentre 6 resta massless e rappresenta il bosone di Goldstone.
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Osservazione Dopo aver fatto una traslazione rispetto al vuoto, se vo-
lessimo fare una traslazione di fase infinitesima per mantenere la lagrangiana
invariante dovremmo studiare una trasformazione non lineare. forse a lezione
(21) si fa un esempio.

5.6 Fotone massivo tramite Goldstone

Consideriamo la simmetria U(1) (di fase) locale:

L=~ Fu " + (D) (D)~ V(99) (56.1)
in cui abbiamo:
Dy = (0, +ie Ay) & (5.6.2)
e studiamo: \ )
V(esh =7 (¢9' o) (5.6.3)

con (@) = (') = a e a® > 0. Osserviamo che i gradi di liberta totali sono 4
(due dallo scalare complesso ¢ e due dal fotone A).

5.6.1 Sostituzione

Consideriamo ¢ = pe'?, per cui:
Dyé = (Oup +ip0u0 + i Ay, p) e (5.6.4)
= <8Mp +ip(0,0 + eAH)> e (5.6.5)
e conseguentemente:

1 A
L=~ Fu F™ 4 0up0"p+ p* (0,8 + e 4,)° = 5 (0"~ a®)®  (5.6.6)

41
1 A
=1 E F*™ 4+ 0,p0"p + p? e A, AF — 1 (p? — a?)? (5.6.7)

in cui nell’'ultimo passaggio abbiamo fatto la trasformazione di gauge:
, 1
A=A+ - 0.0 (5.6.8)

in questo modo il bosone di Goldestone é stato riassorbito nel fotone che ha
acquistato massa:
m?% = 2a%é?. (5.6.9)

Espandendo intorno al vuoto ponendo:

£=p—po (5.6.10)
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in cui:
(p) = po =*a (5.6.11)

otteniamo:

1 A 2
L= = Fu " + 0,60°€ + (€ + po)? € Ay A" = 2 (€ + po)? = )
(5.6.12)

1 , A 2
— 5 B P 4 0,601 + (624 2p0 € 4+ pB) €2 A, A" — T [€2 + 20

(5.6.13)
= —% Fl FM 4 0,E0M€ + pe® Ay AV — %pg 2+ Lint (5.6.14)
in cui poniamo:
Line = (€24 200€) ¢ Ay AV % [ + 400 %), (5.6.15)
Infine, dobbiamo rinormalizzare:
1
& — ﬁf (5.6.16)

2

e sostituiamo p% = a“, cosl otteniamo:

1

£:4

1 A
E,, FM + 3 OuLOHE + a® e* A, AP — D a4 Ly (5.6.17)
dunque, che sta descrivendo un campo £ reale con la stessa massa vista in

precedenza:
A g

mg =59 (5.6.18)
ed un campo vettoriale massivo con:
M3 =2a*é% (5.6.19)

Osservazione. [l risultato assomiglia alla lagrangiana di Proca (i termini
quadratici sono uguali, ma i termini di interazione sono diversi) ma sta volta
é rinormalizzabile; la rottura spontanea della simmetria preserva i gradi di
liberta e li riorganizza: un grado di liberta appartiene a £ (particella di
Higgs) e 3 appartengono al bosone massivo A, in piu la trasformazione di
gauge equivale a inglobare il bosone di Goldstone dentro A e in particolare
la polarizzazione longitudinale di A coincide con il bosone di Goldstone.

Nota. Non si pud fare un discorso analogo con il campo spinoriale
perché dovremmo fissare I'invarianza per rotazione e quindi 'invarianza di
Lorentz/Poincaré!
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5.7 Struttura del modello standard (Glashow-Weisberg-
Salam)

Possiamo descrivere la fisica utilizzando:

e Particelle di materia, descritte da campi spinoriali (Dirac/Weyl),
che si separano in:

— Leptoni (elettrone, muone, tau e neutrini), che sono particelle
elementari, ovvero senza ulteriori strutture interne.

— Adroni, costituiti da quark (up/down, charm/strange, top/bot-
tom) che sono particelle fondamentali.

e Interazioni (elettromagnetica, debole e forte, ignoriamo la gravita),
descritte da campi di gauge (vettoriali), legati alla simmetria di gauge.
Queste interazioni fanno parte del gruppo di gauge: SU(3) X SU(2) x
U(1), in cui il termine SU(3) riguarda la carica di colore (Quantum
Chromo-Dynamics, che non trattiamo), il termine SU(2) ¢é isospin,
SU(3) é 'ipercarica e inoltre SU(2) x U(1) unifica elettromagnetismo
e forza debole (notiamo che da solo U(1) non ¢ I'elettromagnetismo).

e Settore di Higgs, descritto da un campo scalare che é responsabile
della generazione dei termini di massa della materia (che non posso
aggiungere direttamente).

Modello Standard delle Particelle Elementari

tre generazioni della materia

(fermioni)

mediatori delle forze / interazioni
(bosoni)

=2.2 MeVic? =1.28 GeVic? =173.1 GeVic? 0 =124.97 GeVic?
[= % % % 0 0
wn s QU « (€ + - Q) o (H
up charm top gluone higgs
=4.7 MeVic? =06 MeV/c? =4.18 GeV/c? 0
Y5 ¥ Y5 0
% d % S £73 b 1 »
down strange bottom fotone
=0.511 MeV/c? =105.66 MeV/c2 =1.7768 GeV/c? =01.19 GeV/c2
-1 -1 -1 0
£ e % IJ % T 1 ;
elettrone muone tauone bosone Z
<1.0 eVic? <0.17 MeVic? <18.2 MeV/c? =80.39 GeV/c?
0 0 0 +1
Ve Vi Vt 3 \%
neutrino neutrino neutrino
elettronico muonico tauonico bosone W
.
Figure 5.3

Se si rompono esplicitamente (non spontaneamente) le simmetrie di gauge
allora si ottengono delle equazioni che non sono consistenti, quindi bisogna
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verificare che le simmetrica di gauge vengono conservate dalla quantizzazione.
Se abbiamo delle anomalie, ovvero le simmetrie non sono conservate dalla
quantizzazione la teoria perde di senso. Nel modello standard per evitare
anomalie nelle simmetrie di gauge il numero di famiglie dei quark devono
essere uguali al numero di famiglie dei leptoni e sono 3 ciascuno (elettrone
e neutrino elettronico fanno parte della stessa famiglia, idem per gli u, 7,
analogamente up/down, top/bottom e charm/strange).

La lagrangiana del modello standard ¢é costituita da un termine di Young-
Mills (bosoni vettori che mediano le interazioni), un termine di Higgs, un ter-
mine di materia (descrivono leptoni e quark) e delle interazioni di Yukawa.
Andiamo a studiare prima il settore leptonico, per cui abbiamo solo inter-
azioni elettrodeboli, dopodiché trattiamo i termini di Yang-Mills e di Higgs,
infine studiamo le interazioni elettrodeboli del settore adronico: costruiamo
la parte di interazione debole in analogia al settore leptonico e analizziamo
il mixing dei quark.

5.8 Termini cinetici di Yang-Mills rispetto ad gen-
eratori

Il termine di Yang-Mills ¢ dato da SU(3)¢ X SU(2)r, X U(1)y con numeri
quantici di colore (C'), isospin (I3) e ipercarica (Y'). Il gruppo SU(3) descrive
le interazioni di QCD tra i quark mediati dai gluoni, mentre SU(2) x U(1)
descrivono le interazioni eletteodeboli mediate dai bosoni Wﬁc (corrente de-
bole carica), Z,, (corrente debole neutra) e A, (corrente elettromagnetica).

Introduciamo inoltre le costanti di accoppiamento gs, g2, g1, rispettiva-
mente per l'interazione di colore SU(3)¢, U'interazione di isospin SU(2)r, e
'interazione di ipercarica U(1)y.

Per il gruppo SU(3)¢c abbiamo i generatori:

1
TB:§)\B Be{l,...,8} (5.8.1)
in cui A sono le matrici di Gell-Mann-Low ed i bosoni vettori sono i

gluoni: GE .
Il termine cinetico per la QCD é:

8
1
Locp = —7 > ah o (5.8.2)
B=1

che in realtd non utilizzeremo, ma ’abbiamo citata solo per completezza, e
in cui definiamo:

GE =0,GF — 8,65 — g5 PP S gL (5.8.3)
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Per il gruppo SU(2);, abbiamo i generatori:
1
T¢ = 5 o a€d{l,2,3} (5.8.4)

in cui o sono le matrici di Pauli ed i bosoni vettori sono: W[}

Il termine cinetico é:

3
1 a aur
Ly=—7 > wh, G (5.8.5)
a=1
cul definiamo:
Wi, = 0,W — 0,Wyt — ga e W)Wy, (5.8.6)

Per il gruppo U(1)y abbiamo un unico generatore ('identitd) ed un
bosone vettore B,,. Il termine cinetico é:

1
L1=— B B" (5.8.7)

in cui definiamo:

By = 8,B, — 8,B,. (5.8.8)

5.9 Settore leptonico

Dai risultati sperimentali (di Madame Wu) si osserva che le interazioni deboli
violano la parita, dunque le componenti L e R si comportano diversamente
e percio conviene usare gli spinori di Weyl anziché quelli di Dirac.

Una famiglia contiene una particella (e, u, 7) e il suo neutrino associato,
nel modello standard e/u/7 hanno una componente L e una R, mentre i
neutrini sono massless ed esistono solo nella chiralita L (negli esperimenti si
osserva che oscillano e hanno una massa molto piccola < 1 eV).

Le componenti Left formano un doppietto di SU(2) che indichiamo come:

L= <”€LL> (5.9.1)

mentre le componenti Right sono dei singoletti di SU(2) che indichiamo come
lr, vr. Vedremo che il neutrino Right é é completamente disaccoppiato,
ovvero non interagisce.
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5.9.1 Bosoni fisici e costanti di accoppiamento

Per comodita possiamo definire:

W,=Wio" (5.9.2)
w3 wl— iW2>
— 1 Z 2z (5.9.3)
1 2 3
(Wu +iW; Wy
Wi V2 W*)
= H o (5.9.4)
- 3
<\/§ w, W,
in cui abbiamo posto:
Wl Fiw?
wit = e T (5.9.5)

e quindi usiamo:

1

ox =5 (01 £ io9) (5.9.6)

dunque:

_ 1 . . : :
WJ or+W, o= 57 [(01 + i09) (W}} — ZWE) + (01 — i02) (W,} + zWﬁ)
(5.9.7)
1

= — (Wyo14+ W] o). (5.9.8)

V2

Sappiamo che SU(2) x SU(1) descrive la corrente elettro-debole, che é com-
posta da una corrente debole carica, una debole neutra e la corrente elettro-
magnetica.

Possiamo usare Wf per mediare la corrente debole carica e vogliamo
utilizzare una combinazione lineare dei due bosoni rimanenti per mediare
la corrente debole neutra e 'elettromagnetismo, per cid introduciamo una
matrice di rotazione R ortogonale (RTR = 1):

Ay _ ( cosby sinfy\ (B
<Zu> a (—sinew Cos@w> <W3> (5.9.9)

{Au = sin 8, Wj’ + cos 6, B,

5 (5.9.10)
Z,, = cos Oy, Wu —sin6, B,

che invertendo abbiamo:

w3 cos 0 sin 6 Z
p — w w 2
<Bu> <— sinf,, cos 0w> <Au) (5.9.11)

{Bﬂ = cos by Ay —sinby, Z,,

Yy (5.9.12)
Wy =sinby A, + cosby Z,
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nata che vale 6, ~ 28°, detto angolo di Weinberg, oppure angolo di weak
mixing. Questa scelta per Z e A é giustificata anche dal fatto che nella
rottura di simmetria tramite Higgs la combinazione che forma Z acquisisce
massa, mentre A rimane massless.

Dafiniamo la derivata covariante come:

D, =0,+1iqn % B, + %gg W o“ (5.9.13)
in cui il primo fattore 1/2 ¢ una convenzione, mentre il secondo ¢ dovuto al
fatto che il generatore di SU(2) sia 7% = 0% 1/2. Questa scelta di derivata
covariante rende la lagrangiana invariante rispetto a trasformazioni locali
di SU(2) x U(1), inoltre bisogna ricordare che quando applichiamo questa
derivata covariante un un singoletto di SU(2), il termine con W ¢ nullo.

Le costanti di accoppiamento verranno fissate imponendo la carica elet-
trica di elettrone e neutrino Left, tramite lo studio della derivata covariante
per il doppietto Left:

Y vr, i w2 V2WH (v

= — - 9.14

D,L =0,L+ig 5 B, <ZL> +3592 <ﬂWu w I (5.9.14)
i (1Y B, + g W3 V2 g Wi > <I/L)

=0, L+~ K # p 5.9.15

) < V29 W, Y B, —gW3) \lL ( )

i (1Y Bu+g2W3) v+ (V2ga W) ZL)
=0ul+5 g ’ s . 5.9.16
g 2 ((leBu_QZWE) ZL+(\/§QQW/;) v, ( )
Anche:
LPL=LOL+ LI L+ Ly I L (5.9.17)

— 1 ) -
=LOL+5|vey" (Y Bu+ W) v +1oy" (1Y Bu— o W) o+

) _ - _
5 V200 (P Wit + 1" W ). (5.9.18)
Studiamo la corrente elettrodebole:

_ i _
Ly L= !Vm#(leBu + 9 W) v +17" (91 Y Bu— g2 W) lL]

(5.9.19)
= %PL’W (g1Y cosby + g2 sinby,) A, — (g1 Y sinby, — go cosby,) Z,
+ %ZL Y| (1Y cosby, — ga sinby,) Ay — (1Y sinby, + g2 cosby) Z,

(5.9.20)

v+

Iy
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siccome A media la corrente elettromagnetica, quindi dobbiamo imporre la

carica elettrica:
vy, - %(le cos By + g2 sin0w> =0
(5.9.21)
lr %(le cos by — 9o sin9w> =e
OVVero:
—go sinf, = g1 Y cosf, =e (5.9.22)
se imponiamo che l'ipercarica del doppietto Left sia Y (L) = —1, allora:
go sin by, = g1 cos b, = —e (5.9.23)
ovVero:
e e
=— =— 5.9.24
91 cos 0y, 92 sin 6, ( )

che se sostituite nella corrente elettrodebole:

LAH JﬁwL =delr M Al — % [I/L Y (1Y sinb,, — go cosby) v+

+ 19" (1Y sinfy, + g2 cosby) Iz, Zy (5.9.25)
7 ie - . 2 2
=ielp YAl + ——F—— | =T <sm 0, + cos Qw) v+
2sin 6, cos 8,
+iryH (Sin2 0, — cos> 9w> | Zy (5.9.26)
= —te —ZL (’)/MA )ZL + ;ﬂL (’)/MZ )Z/L—
K sin (26,,) K
————— 1. (" Z) |- 5.9.27
tan (260,,) L (" Zu) ( )
5.9.2 Numeri quantici e campi
Possiamo riscrivere la matrice di Pauli in funzione dell’isospin:
(5.9.28)

1
sz
3 203

e cio ci permette di ricavare la formula di Gell-Mann e Nishijima:

Y
:—I
Q 2+3

(5.9.29)
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che usiamo per ricavare I'ipercarica (Y') che é uguale per tutti i membri dello
stesso multipletto. Ricordiamo che per i singoletti I'isospin vale Is = 0,
mentre per i doppietti é:

1
I3 = —1—5 (5.9.30)
per la prima componente e:
1
per la seconda. Abbiamo:
L= <VL> (5.9.32)
I

¢ un doppietto rispetto a SU(2) ed & carico rispetto ad U(1); g & un sin-
goletto rispetto ad SU(2) (I3 = 0) ed ¢ carico rispetto ad U(1). II campo
di Higgs ¢ un doppietto di SU(2) ed ¢ carico rispetto ad U(1), pertanto lo

definiamo come:
¢+
b = <¢0) (5.9.33)

dove ¢, ¢¥ sono due campi complessi e ¢ ha carica +1.

Riassumiamo il tutto nella tabella 5.4.

Higgs Leptoni Quarks
ot | 0" [ wp | 1o [vr|lr | ur | dp | ugr | dr
Ql+1J oo 1o [-1[+Z]-2[+%]-2
T T T T 1 1
AR IR
V] +1[+1][-1][-1]o0 [2]+i[+i[+2]-2
Figure 5.4
5.9.3 Lagrangiana massless dei leptoni
Riassumendo, per il doppietto Left abbiamo:
LPL=LJL+LA"J¥ L+ LA"JL (5.9.34)

n cui:

L’y“JZ“’L:ie[lL (ALl + )ﬁL W Z,)vr )ZL (¥ Z,) 1

sin (26, ~ tan (26,
(5.9.35)
_ le _
LA JL = —————— (v A" Wl + A" W, v 5.9.36
Iy, \/ﬁsinew<L7 u L+l W, L) ( )
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mentre per i singoletti Right abbiamo:
In Pl =T dlg +iclny" (A, - tanby, Z, ) n (5.9.37)

il neutrino Right ¢ completamente disaccoppiato, nel senso che non abbiamo
interazioni elettrodeboli.

Infine osserviamo che nei termini puramente cinetici la parte L e quella
la R sono identiche, quindi possiamo scriverli come:

ZL@ZL—i-ﬁLaI/L-I-ZRaZR—i—?RaZ/R:Z@l—I—P@V. (5.9.38)

Possiamo scrivere la lagrangiana del settore leptonico come:

Liep=iLPL+ilgPlr+ivp Pvr (5.9.39)
_ - 1
:il(ﬁl—i—iﬁﬂy—e(lv“l) Ai+e mPL’y“VL—
— ——— "l +tanby, Ig " Ig| Z
tan (26,) LYl +tanOy IRV IR | Zyu+
+ __°c (ﬁL ’}/“ wr lr, + ZL ”y“ W= VL) (5.9.40)
V2 sin 6, " ’

in cui il primo termine sono i termini cinetici e di corrente elettromagnet-
ica, il secondo la corrente debole neutra e 'ultimo la corrente debole carica.
Osserviamo che le correnti deboli (neutre e cariche) si accoppiano in modo
diverso con le componenti left e right, questo € sintomo del fatto che le in-
terazioni deboli violano la parita.

Riscriviamo la lagrangiana usando i proiettori Left e Right:

1- 1
Po=-5 pp=-i8 (5.9.41)
2 2
e per entrambi vale (Pr g)? = ]-JER = Pr, r. Osserviamo che:
O, (Y Bu) ¢ = " PLy°+* B, Pp ¢ (5.9.42)
=10 y* (PL)’ By ¢ (5.9.43)
=" P B¢ (5.9.44)

e analogamente per R. Scriviamo:
Liep = iWPl+ivdv —e (Zv“ l) A+
e . - .4
+ Y520, |:I/’)/‘LL (I —=75)v+ 14" (4sm O — 1 +75) l] Z,+
e

+—— (AP A =)W+ 1P (1 =)W, v). (5.9.45
55 g P L= W LT (1= 0a) Wy ). (5.9.45)
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Annotazioni. Nel studiare il settore leptonico abbiamo un po’ barato, nel
senso che se teniamo le componenti L /R esplicite non dovremmo utilizzare v
(matrici 4x4) bensi le o (matrici 2x2) per le componenti R e le @ (matrici
2x2) per le componenti L. Ricordiamo che o# = (1,5) e a* = (1, —&), inoltre
in rappresentazione di Weyl abbiamo:

0 ot
w—
y <Ju 0 ) (5.9.46)

(§ possiamo osservare che:

O 1 O (o o' 0
(V7] 9.47
v <1 0) <o’“ 0 > ( 0 0M> ’ (5’ 4 )

In pin, nel nostro disorso abbiamo utilizzato un abuso di notazione per cui:

Yr, = <ff> , YRp= <J;> (5.9.48)

questo abuso & compatibile con le relazioni dei proiettori:

1+

A Loy, (5.9.49)

2

(5
inoltre:
Y =vYr+ YL (5.9.50)

che ci giustifica I'uso della +. Riarrangiando i termini ritroviamo la la-
grangiana:

Ly =LIa"iD,L+1l0"iD,lg+vho"iD,vp (5.9.51)
—i(1} " Dyl + U}y Dulr) +i (v " Dy + vh o Dy i)
(5.9.52)
(4 + ot 0 . Iy, 1 1 ot 0 . 149
= 1) (O Uu) (iD,) <ZR + (b B (G ) D) o
(5.9.53)
. l . v
= (1 th)omamn () + (v k) rama (1) Gosn
=1(iv* D)l + v (iv* D) v. (5.9.55)

5.10 Trasformazione di carica e di parita

—

Ricordiamo ancora che o# = (1,5), o* = (1,—37) e che nella rappresen-

tazione di Weyl:
"
Y= (0 %) (5.10.1)
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ma anche che, nella stessa rappresentazione:

o (0 1 . (0 o (1 0 C_ia2()
T=\1 0 T\ 0 B=\o -1 “\o —io?)

Mentre in quella di Dirac:

0 __ 1 0 i 0 O'i . 0 l C_ 0 —i02
T =\ 41 T\ 0 =11 0 “\—ie2 0 )

La parita (P) in generale agisce come:

bt 7)) = WP, 5) =0yt —7). (5.10.2)
La coniugazione di carica é:
C=iy"4% = —ir?y° (5.10.3)
e in generale agisce come:
v %yl =cyct (5.10.4)

in base al tipo di campo a cui lo applichiamo abbiamo una trasformazione
diversa rispetto C. Vediamo i deiversi casi.

Spinore chiriale. La coniugazione di carica agisce come:

v 5y =neo@)” (5.10.5)
ovvero:
v=(1E) S v —nec@)! (5.10.6)
R
=nc C A y* (5.10.7)
= —incy2P* (5.10.8)
2 *

= e (2.22 o ) (zg) (5.10.9)

_ _7;0-2 1/}* (tz _f)
— e <+i02 @z;;i(t, __f')) (5.10.10)

per brevita richiediamo che la fase sia ng = 1.

Scalare complesso. La coniugazine restituisce:

» % ol =9 (5.10.11)

dunque per PC abbiamo:

P = <¢L> CE 0P — ¢*(t, -7) = (¢A> . (5.10.12)
o3 o
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Bosone vettore neutro. Abbiamo:
A, S A9 =4, (5.10.13)
dunque per PC otteniamo:
BS" = (B§", B{'") = (~Bo, B;) (5.10.14)
(W,f’) = (WP, WHP) = (—wg, Wd). (5.10.15)
Bosone vettore carico Abbiamo:
+ c +\C _ +
Au — (Au) = _Au (5.10.16)
dunque per PC otteniamo:
(W) = (WHF, (W eF) = (=W, WiF). (5.10.17)

Invarianza della parte leptonica sotto CP. Dimostriamo che la parte
leptonica del modello standard é invariante sotto CP:

i@*y“Duw:in'yofy“ (8 +zgl B + = QQWa “) 0

— i)y

7
292

— i (—iy %Z))T 09% 1 + 8o +ig1 =

Y
CcpP . cpP
lﬁu —ig1 5 B —

Y
B0—|—

cP
—=

(5.10.18)

(W2 + Wot + W, a—)CP] WP (5.10.19)

Fyo (R ) | (it

Y
+—i (—iy @Z’)T ‘ l[_ai—igl2Bz’—

*%,92 (VVZ’30'3+W-70'++WZ-+

1
=+ ipT 42 (779°) 42 [80 +ig

. ' .Y
— it ? (104 42 [ai +ig 5

2

O'_>]
Y 7
Z Bo+ -
5 0+ 592

1
Bi+ 7 g2

2

(—iv*y*) (5.10.20)
(W{;” o+ Wy ot W 0'_):| Y —

(WP + W, o" Wt 0_)] b
(5.10.21)
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abbiamo che Cy*C~! = —(v")T, ma siccome C = iy?¢2 e C~! = CT =
—CT = —C, otteniamo che:

—(° ) () = ()" (5.10.22)
Pertanto, oltre a (y?)? = —1, abbiamo:
VA2 = —Cy O = —(vH)T 4% = - (). (5.10.23)

Trasporre la matrice W equivale a scambiare i bosoni carichi, B resta uguale.
Dunque abbiamo:

— . .Y { cpP
iy Dyrp = ipT 0 4 <3u+19123u+292W§0“>¢ —
(5.10.24)

) 1 _ _\\T
AN —M/JT (70 VO)T [80 + 3 (leBo + g2 (Wg’ o3 —I—VVJr ot Wy o )) (wT)T-i-

+ip" ()T ()" |0 + B (1Y Bi+

+go WP+ Wirot W o7)) | (wN)T (5.10.25)

(2

=... (5.10.26)

La parte leptonica del modello standard é invariante sotto CP:

e} ot iD,ep = ief o <(‘9 + 5 q" ) R (5.10.27)
CR <§ ”BCP> eGr (5.10.28)
= —i(—ieko?)o° ( Bo)) (io0? efy)—
—iek o?) ot ( %g z) (ic%ey)  (5.10.29)
= —ick (0?0’ 0?) < )

+iek (6% o' o? <8 + = g"B) (5.10.30)
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ma abbiamo che 02 0% 02 = 00 = (69)7 e 0% 0?02 = (¢%)7, per cui:

= —ieh (60T <80 + %g” Bo) eq+iek ()T (82- 42 q" BZ') er

2

(5.10.31)

= —ieh (oM)T (3M + %g" Bu) e+ 10, (ef (") ef) (5.10.32)
i T

= [—ieg ()T 5 ¢" Byer+i0, (ef (o) 63)} (5.10.33)

— ief, 0" <au - %g” BM> er. (5.10.34)

5.10.1 Decadimento del muone
Il muone decade tramite il bosone W, quindi usiamo la corrente carica:

(&

L=—
2v/2 sin 6,

inoltre ricordiamo che la costante di Fermi vale:

(f’v“ A=) Wil+1y" (1 =2") W, 1/) (5.10.35)

2

e
Gp = . 5.10.36
P 42 sin? 0, M2 ( )

Abbiamo la situazione raffigurata in figura 5.5.

Figure 5.5: Processo di decadimento del muone.
Abbiamo:
(=, I L

= Ssin’d, (Wul Vv (L=5) W, by, by, V7 (1=75) W e [y, ¢e¢ue>

(5.10.37)
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cosi che:

(i€)2 — p (_inpa)
— " 1—
8 sin’ 6,, 27" 7S)uls—ng

2
U P (1 —75)ur - w3y, (1 —5) 14 (5.10.39)

u3v° (1 —v5) v (5.10.38)
_ ie
~ 8sin?0,, (s — M2)

e di conseguenza:

64

MP = oo =3 o (@7 (1 =99y ) (T (1= 75)va) x
w spin
X (Hl 77 (1 — 75)u2) (?4 Yo (1 =) U3> (5.10.40)
4 M2
~ T {0+ )0 (0= 50) () (1= 73) |
X Te{ (g, +me) 7 (1= 35) (B) % (1= 75) | (5.10.41)
4 2
= i (s )" Te{(p, 0979797 (1= 2)
x Tr{(;p3 + 1) Yy Ve Yo (1 — 75)} (5.10.42)
M, G

T - M2 (P1)a (P2)s (p3) (p4)” Tr{fy“ VAP AP (1 — 75)} y

X Tr{Ye v ¥r Yo (1 —5)} (5.10.43)

= (24]\4;4%7 (p1)a (p2)3 (p3)" (pa)” [1°7 777 4 0 0 — 70 — 079 x
X [neo Nrp+ NepN” = Ner Nop — iee,m} (5.10.44)
= m (p1)a (p2)3 (p3)° (pa)" | (07 07 + 07 07 =7 577
X (o T+ ep 177 = er Top) = €°7% £ | (5.10.45)
= (%]W;ﬁ; (P1)a (P2)s (p3) (Pa)” [2 (63 o8 45 65’) —
—9 (5“ 58 — 50 55’) } (5.10.46)
= (24]\4;4%7 4(p1 - pa) (P2 - p3) (5.10.47)
2P My GE -
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5.11 Settore di Higgs

I riferimenti sono p. 527-530 dello Srednicki [7].

Per definizione I’'Higgs si trasforma in maniera non banale rispetto SU(2) X
SU(1), come: '
d» — YU (5.11.1)

mentre non interagisce con i quark essendo essi doppietti di SU(3). Consid-
eriamo:

Ly = (D,®)" (D'®) - V(o @) (5.11.2)
che ¢ invariante per trasformazioni locali di SU(2) x SU(1) se definiamo la
derivata covariante come:

v .
DM:8M+ig1§BM+%gz W gt (5.11.3)

dove il primo fattore 1/2 ¢ una convenzione, mentre il secondo & dovuto al
fatto che il generatore di SU(2) ¢ T® = ¢®1/2, inoltre abbiamo visto che
Y (®) = +1. Ricordiamo che abbiamo definito:

W,=W;o* (5.11.4)
w3 wl— z'W2>
= e SR (5.11.5)
1 2 3
<Wu +iW, Wy
w3 V2w
= H & A1,
<\/§ wo o —wh ) (5.11.6)
in cui avevamo posto:
WlFiw?
Wi = AT (5.11.7)
V2

ossia utilizziamo o

cinetici diventano:
El, =0,W} —0,Wi—go (W2W} —W3W2)
F2, = 0,W; = 0,W?2— g2 (WiW7 - W3Wy) (5.11.8)
Ep,=0,W3 —0,W2 —ga (Wi W7 -W2W,)

anziché o1 e 09. Con questa Sostituzione i termini

cio¢:
FL=0W =0,WF —g (WiW, —W, W)
Froy=0,W, —0,W; + g2 (WEW,} - W, W?) (5.11.9)
F3,=0,W2—0,W2—gy (W, W,H —W}FW,)
quindi per la parte SU(2) x SU(1) (forza elettrodebole di YM) e la parte di
Higgs abbiamo:

1 1 1
Lymn = =7 Bu B3 F3 3t poiv (DEG)T (D, @) -V (9F ®).

47 9 "
(5.11.10)
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5.11.1 Rottura della simmetria tramite Higgs

Possiamo scegliere:
2 2
V(@le) = (cpT o — ¢3) >0 (5.11.11)
295

la scelta di questo potenziale fa si che tutta la lagrangiana sia invariante
rispetto a SU(2) X SU(1) locali. Vogliamo studiare il vuoto di questa teoria,
siccome il potenziale & definito positivo abbiamo che il minimo del potenziale
si trova per:

TP — ¢ = |Daf* + P> — 65 =0 (5.11.12)
una delle soluzioni (quella che si prende convenzionalmente) é:
(@a)=0 , (PB)=do (5.11.13)

ovvero la configurazione di vuoto é:

(@) = <£0> (5.11.14)

e siccome ¢y # 0 rispetta le simmetrie di Poincaré. Possiamo espandere
rispetto al vuoto considerando ® = (®) + ¢, in cui:

¢ = @2) (5.11.15)

sono le oscillazioni di vuoto e ha 4 gradi di liberta (2 per ogni componente).
Vogliamo anche verificare quali simmetrie sono preservate dal vuoto. Per

oF abbiamo:
o v o) (a) 7 () 51116
Y 0/ \¢o %o o

cio¢ il vuoto rompe spontaneamente i generatori o' e o2 di SU(2), analoga-
mente per ¢ abbiamo:
X 0 0 0
5.11.17
(0 5 ()7 (&) 1117
e per U(1) abbiamo:

o0 <£O> ” (£0> . VO £0. (5.11.18)

Quindi apparentemente il vuoto rompe tutti i generatori, tuttavia se com-
biniamo le due trasformazioni o e U(1), abbiamo che:

T (exp{i (g —3¢%)} 0 > <0> (5.11.19)

exp{—z’ (9+ %63)} 0N

0
- <exp{_i 0+ 563)}%) (5.11.20)
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questa trasformazione lascia il vuoto invariato nel caso in cui § = —% €.

Quindi dei 4 generatori soltanto uno preserva il vuoto, pertanto abbiamo
3 bosoni di Goldstone che possono essere riassorbiti nei bosoni di gauge e
quindi abbiamo 3 bosoni massivi: Wiﬁ e un’unica combinazione di ij’ e
B,, che chiameremo Z,, (combinazione ortogonale alla scelta 6§ = —1/2¢€),
infine abbiamo la particella mass-less che preserva il vuoto e rappresenta
I'elettromagnetismo (A,,).

5.11.2 Calcolo del potenziale

Ci possiamo porré nel gauge unitario dove mettiamo i bosoni di Goldstone
a zero perché li possiamo riassorbire tramite una trasformazione di gauge,
quindi:

= (B) 4 ¢ = (gbof%) (5.11.21)

in cui h ¢ il campo scalare reale di Higgs (gia correttamente normalizzato).
Abbiamo:

h 2
TP = <¢>0 - \/§> (5.11.22)
1
:¢%+\/§¢0h+§h2 (5.11.23)
h
2
=2+ V2¢ 1+ h 5.11.24
% %0 < 2ﬂ¢0> ( )
e anche:

vo " (ste - g2)’ 5.11.25
=5z (#1e =) (5.11.25)

2 h ?
= m? h? (1+ ) (5.11.26
2v2 ¢y )

213 214
_ 2y R mh (5.11.27)

V2¢o 8%

quindi la massa di Higgs é m% = 2m? e possiamo osservare che aha interazioni
h3 e h*, dunque possiamo avere un vertice con 3 o 4 gambe esterne.

5.11.3 Calcolo della derivata covariante
Per calcolare il termine cinetico studiamo la derivata covariante. Per sem-
plicita poniamo:

n= (5.11.28)

Sl =
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e possiamo vedere:

D, ® = [a +- ng 4L e <ow3/— @%)} <¢i > (5.11.29)
(o) #3 (" Tai o g) (0) o
(5.11.30)
() e
+
_ (@m fgbiii()) j(Lg?)BW_ . W3)> (5.11.32)

insieme a:

(D,®)" = (\;592 (po+mn) W, aun*%. (¢o+n) (91 B — g2 W)
(5.11.33)

conseguentemente:

2
(D,®)" (Dr®) = fa ho*h + = <¢>0 + \h[) [293 WP Wkt
+ (91 By — g2 W) ] (5.11.34)
1 h\?
fa hoth + = <¢o+ ﬂ) [zgg WP Wkt

+ (9 +93) Zu Z“} (5.11.35)

con:

g1 Bu — 92 WB

Vi + 93

Z, = (5.11.36)
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5.11.4 Lagrangiana di Higgs e masse dei bosoni vettori

Abbiamo:
Ly = (D,®) (D'®) — V(o @) (5.11.37)
1 m 1 h 2 2 + —, 2 2 10
= 3 0uh0"h+ ¢ {0+ [QgQWM Wl + (62 + g3) Z, Z ]_
213 214
_m2p2 - T % (5.11.38)
V2¢o 845
1 1 1
=5 0uh 0"h — im%h2+§m2ZZﬂZ“+m%VW/j W
1 h2 2 + — 2 2 1%
— 1 (5 +V2e0n) [203 W W+ (gF + 63) 2, 2¢] -
2h3 2h4
S (5.11.39)
V249 895

in cui la prima riga di (5.11.39) sono il termine cinetico per h e la masse
dei bosoni, mentre la seconda e terza riga rappresentano le interazioni. Le
masse dei bosoni di gauge sono:

2 2 Q%Q% 2 2 2
mip=2m® , omiy =0, m = (97 +93) (5.11.40)

e se sostituiamo:
e e

= - = — 5.11.41
91 cosb, 92 sin @, ( )
otteniamo: 5 5
2 N 2 e” &g
= = . 5.11.42
MW= 5 082 0, Mz 2 ( )
5.12 Lagrangiana di Yang-Mills-Higgs
Possiamo riscrivere:
sin 6, = % , €08y, = % (5.12.1)
VvV 91+ 95 91 + 95
in cui 0,, é detto angolo di Weinberg. Dunque abbiamo:
A, =sinb, W,z + cos 0w B, (5.12.2)
Z,, = cos by W, — sin 0w B,
OVVero:
Bu3: cc?sﬁw A, —sinb, Z, (5.12.3)
Wy =sinb, A, +costy Z,
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in cui Z media la corrente debole neutra e A media l'interazione elettromag-
netica. Definiamo inoltre:
A =0,A, - 0,A,
Zyy = OuZy, — 0,7, (5.12.4)
Wik =0,W;r —0,WF

che sostituiamo nei termini cinetici di Yang-Mills. Abbiamo:

Fit, = Wit Figa | sin (AWF = WFA,) + cosb (Z,WF ~Wi2,) |

v

(5.12.5)
Fiy = 51000 Ay + €080 Zyo | — ige (W W = W W) (5.12.6)
B, = 0,B, — 0,8, = cosy Ay, —sinby, Z,,,. (5.12.7)

Sostituendo otteniamo la lagrangiana che descrive i bosoni di gauge ed Higgs:

1 1 1
Lymn =—7 Bu B* — 1 5 iFlj; FoH 1 (DF)T (D,®) — V(0! )

(5.12.8)
1 n 1 uv ]. uv
- _7F“VF _7Z,ZIVZ,3 - = [/L l/[/[/ +

1 1 1
+ 5 Ouhdh = o mj h* + 3 my Z,Z" + miy WEW -

1 [h?

-1 (2 +v2 ¢ h> [zgg W,SW=H + (6 + 93) 2y Z“] -
m2h m? h4+
V2¢y 8¢5

- iga | sin 0 (Wi, W A” — Wi, Wi AY 4 Fy WEWY )+

- cos by, (Wi, WH 22 = Wi WE 2% 4+ Z,, WEW?) |+

2
g v 14 4
_,_52(29# gP7 — g g’ — g g p)

Wi Wy (Ay Ag sin? 0+
+Z,Zs cos® 0, + 2A, Zs sinf,, cos 0w> -

1
-3 wWrEwrw,; WU] : (5.12.9)

Osservazione. [ parametri della teoria sono "liberi", ovvero non vengono
fissati dalla teoria e devono essere determinati dagli esperimenti.
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5.13 Masse dei leptoni tramite Higgs

Nel modello standard 1’elettrone & massivo, mentre il neutrino & consider-
ato massless, inoltre il termine di massa deve rispettare tutte le simmetrie
(Lorentz e gauge). Per fare in modo di avere un oggetto invariante per
Lorentz e per SU(2) x U(1) dobbiamo considerare LT ® eg + ef; ® L, es-
pandiamo la teoria intorno al vuoto e verifichiamo che questo & un termine
di massa (nota: ® ¢ il campo di Higgs ed ¢ un doppietto, moltiplicare due
doppietti ci permette di ottenere un singoletto). Vediamo:

0 h
Lr@ep+ep® L=( €Z)< >€R+6E(O . G0+ =) (Ve)

¢o + % Vv27' \er
(5.13.1)
_ ((,50 n \%) (ez er+eh eL> (5.13.2)

che contiene il termine di massa (a meno di una costante moltiplicativa).
Definiamo:

=) () (D) tmern G139

dunque la lagrangiana per i leptoni é:

Elep = Z

a

(LYt & iD, L+ (1%)" o"iD, 1%~

ca ((L“)+ DI+ (1%)T o La> ] . (5.13.4)

5.14 Adroni e quark

Sperimentalmente si osserva e:

n — p++67+§e
pt — n+4+et 4,

il protone (p = uwud) e il neutrone (n = ddw) sono degli adroni, ovvero degli
stati legati di quark, quindi bisogna inserire dei termini di interazione tra i
quark e i bosoni di gauge. Per ora consideriamo solo i quark up (g, = %e)
e down (qq = —% e), che possono esistere sia come particelle left sia come
right, siccome l'interazione debole rompe la parita, definiamo i doppietti left

e 1 singoletti right per SU(2):

0= (1) au= (1) s



5.14. Adroni e quark 75

dove u e d (sia L sia R) sono spinori di Weyl. Possiamo descrivere 'interazione
elettrodebole come per i leptoni:

1

DM:(‘)M—F%gg Wi+ 30Y B, (5.14.2)
7 _ i Y
:8u+5g2\/§ (W;0++WM U_) +1 (gzlgWﬁ’—i—ngBH)
(5.14.3)
sostituiamo:
BM3: c?s Ow Ay —sinby, Z, (5.14.4)
W, =sinby A, + cos by Z,
e e Y

- _ = _ =]+ = .14.

g1 COS ew y 92 sin ew ) Q 3+ 2 (5 5)
cosi otteniamo il termine:
Y cos b sinf, Y

I3 W3 — B, =— A+—" 272, -—Y "7 5.14.

92 3W“+912 ’ 6<Q “+sin9w 3n cos @, 2 ”) ( 6)
e Y

=—eQA, — I3 —tan’0, — | Z 14.

eQA, —y (3 tan® 6 2) w (5.14.7)
e . Y
= —EQA#—M <COS2 9w13—81n26w 2> ZN
(5.14.8)
2e

— A—7<I—‘20w )Z 5.14.9
cQ Ay sin (26,,) 37 S @) 2 ( )

per cui 'interazione (5.14.3) é:

(W;r o+ W, U_>+

2e
sin (26,,)

. . e
ZDH = z(’?u +6QAM + ﬂTnew
(13 —sin20,, Q) Z, (5.14.10)

e di conseguenza:

— — 2 1-
iQLPQL=iQ,dQr +e <3UL’Y”UL—3dL’Y”dL> Ap+

e —
+7(ﬂ FWEdL 4+ dpA* W, )+
ﬁsin@w L w O L w ok

2e 1 2
[— o - _ & 29
+sin(29w) [quy <+2 3 Stk w) uLt

— 1 1
+dp* (—2 + - sin? 9w> dr,

3 Z, (5.14.11)
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con:
upPup+idpPdr = iup Jup + idp P dp+
2 1-
+e <3uR’y“uR—3dRq/“dR) AH_

2e 2 _ 1. -
— m <3 sin? 0y, TR Y Uy — 3 sin? 0, dr v* dR) Zy. (5.14.12)
La lagrangiana massless di interazione debole per il settore dei quark é:

Loyuark =1Qr P QL+ iur Pur +idg P dr (5.14.13)
_ 2 1—
=iudu+iddd+e (3u'y”u— 3d’y”d> A+

e _
b (A ) WA drr (1 — ) W u)+
2/2 sin @, (u'y (1=7) W, V(=) W, u)

€ a* (1= _8 in2 6 —
T sin (26) [W Ty R e

- 4
—d~* <1 ~% -3 sin? ew) d| Z,. (5.14.14)

Volendo si puo partire dalla derivata covariante generica:

i i
DuQr = (c% +50eWuts q BH) Qr (5.14.15)
Dyug = <8u + %g” B#> uR (5.14.16)
Dydp = (au + %g'" Bu> dp. (5.14.17)

Come prima s’intende W), = Wi o, g; ¢ gia fissata (vedi la sezione §5.14.1),
mentre le costanti ¢’, ¢, """ sono arbitrarie e verranno fissate imponendo le
cariche dei quark!. Inoltre, la parte cinetica della lagrangiana la possiamo
anche scrivere nella forma:

Liq=QFi0"D,QL +u}lioc" Dyug +djio" D, dp. (5.14.18)
Notiamo anche che * e i campi sono dei numeri per SU(2), ma non lo sono
per Lorentz.

5.14.1 Nota sulle costanti di accoppiamento
Se consideriamo una trasformazione per cui la derivata covariante é:

D,V = (8, +iA5T%) ¥ (5.14.19)

!'Nota. Questa g’ non c’entra nulla con quella dei leptoni



5.15. Mixing dei quark 77

allora abbiamo:

_ 1
L=V (9, +iA5T") ¥ — 12 1 F (5.14.20)
92
in cui abbiamo:
F, = 8MAZ, — &,AM + i[Au, Al (5.14.21)

Non possiamo mettere una costante arbitraria dentro la derivata covariante,
altrimenti la lagrangiana non sarebbe pit invariante! Tuttavia possiamo fare
una trasformazione:

Ay — g4 (5.14.22)
dunque:
Fu = g2 (8NAV — O, A, +iga [Ay, Ay]) (5.14.23)
cioé:
L=T (0, +iga AGT") W — % F" Fy (5.14.24)

ricordiamo che la rappresentazione del gruppo di gauge (fondamentale, ag-
giunta) fissa la forma della derivata covariante ma non cambia il valore di
g2. Per una trasfomazione abeliana U(1), cambiare la rappresentazione &
equivalente ad assegnare la carica: il campo trasforma come:

T — ey (5.14.25)
dunque la derivata covariante é:

Dy, =0, +iqA,. (5.14.26)
Assegnare un valore a ¢', g”, g equivale ad assegnare il valore di ipercarica
per le varie componenti.
5.15 Mixing dei quark

Come i leptoni, esistono 3 famiglie per i quark, tuttavia diversamente dai
leptoni (almeno per il modello standard) i quark possono mischiarsi; questo
veniva direttamente dalle osservazioni sperimentali. Negli anni 60 vengono
scoperti dei processi elettro-deboli che portano alla formazione del quark
strange, cid avviene tramite la corrente:

j*=udctd cosb.+uc" s sinf,. (5.15.1)

dove 6. ¢ detto angolo di Cabibbo (sperimentalmente si trova sinf. ~
0.22).
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Il quark down e strange non sono autostati di interazione, quindi Cabibbo
propose di riscrivere il doppietto come:

u u u
<d> — <d/> o <dcos 0.+ s sin@c> ‘ (5.15.2)

Se studiamo solo la parte di corrente neutra:

(d; cos O +s} sin 90) ot 24-cos (29w)) Zy (dL cos f.+s, sin 00) =

( ’UJ)

=3 e S0 (20,) Z,, sinf. cos 6, (szﬁ“ dr, —I—dj{E“ SL) +... (5.15.3)
w

Questa ¢ la parte di corrente di mixing tra down e strange, tuttavia sperimen-
talmente si osservava che i processi con AQ = 0 (carica elettrica), As = 1,2
(strangeness) erano molto soppressi e non venivano spiegati dall’ipotesi di
Cabibbo.

Nel 70" viene proposto il meccanismo GIM (Glashow-Iliapoulos-Maiani)
che richiede l'esistenza del quark charm, che ha carica %e e che forma un
doppietto con il quark strange, e per cui il mixing viene scritto tramite una

matrice di rotazione:
d\ [ cosbc sinfc)\ (d
(s’) o <— sin O 00890> <3> (5.15.4)

tale per cui abbiamo:

. (5.15.5)
s' = —dsinOc + scos ¢

{d’ =dcosfc + ssin o
in cui d’ e s’ sono gli autostati di interazione.

Successivamente sono stati scoperti anche top e bottom, dunque possiamo
generalizzare:

o= (i) - an=(3f) o-n2 (5.15.6)

che non sono i quark fisici, ma le loro combinazioni lineari. La parte cinetica
e:

L= Lg(u®d (5.15.7)

come in precedenza. Nei termini di massa non possiamo mettere diretta-
mente u} up + UE uy, perché non ¢ invariante per SU(2) (L ¢ un doppietto,
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R ¢ un singoletto), ma possiamo usare il doppietto di Higgs, in questo modo
abbiamo:

Qe =UQL)" (Ud)=QUTUS=Qfd (5.15.8)

con U € SU(2). Quindi abbiamo che:

d ~(d +
Lo(d)=-3" [Gglg Q1) ®dy+ G <dl}2) o+ Q“L] (5.15.9)
a,b=1
in cui G((;é) ¢ una matrice complessa 3x3 che permette il mixing.
In corrispondenza del vuoto ritroviamo i termini di massa, ma solo per
il quark down:

0
Qf® = (ut dF) <¢0) = ¢god} (5.15.10)
quindi:
’ d ~(d +
Lo(d)=—d0 > [ (ap)* diy+ G (di) " di] (5.15.11)
a,b=1
= —(Dpdr)t MY (Drdr)"™ MY (D dp) (5.15.12)

in cui abbiamo diagonalizzato:
¢ G = Di MW Dp (5.15.13)

in cui qui le D sono due matrici unitarie ed M@ ¢ diagonale con elementi
reali. Inoltre, i termini Dy, dr,, Dg e dg sono i quark fisici per la componente
down.

Osserviamo che d4p ¢ invariante per SU(2), infatti:

U squl =vtu=1 (5.15.14)
ma anche il tensore anti-simmetrico (€4p) ¢ invariante, infatti:
Qie® — QiUTeU®=Q" (5.15.15)

poiché:
UteU =1. (5.15.16)

Quindi possiamo scrivere il termine di massa per il quark up come segue:

3
Lop(u) =— Z

a,b=1

GSZ) ((Q‘LL)Jr € <I>*> uly — Gsz) (ul}%>+ (<I>T € QaL)]

(5.15.17)
in cui il segno negativo relativo viene dal fatto che € é antisimmetrico.



80 CHAPTER 5. Il modello standard

Se studiamo il vuoto:

o — (£0> (5.15.18)

abbiamo che:

a . a “ 0 1 0y a
Q) e = () (@3)") (1 0) ( ¢0)—¢0 (u)*

01 " (5.15.19)
u
T2 = (0 ) L) = —gous
QT b0 1 o) \ae Poug,
sostituendo nella lagrangiana, il segno negativo relativo si semplifica:
3 . +
Lon(u)=— > [Gf;g) ()t uly — G (u%) uaL] (5.15.20)
a,b=1

- —[(UL ur)t M®W (Upug) + (Urup)t M® (Uy, uL)} (5.15.21)
in cui abbiamo diagonalizzato come prima tramite:
$o GW = U M™ Up (5.15.22)
inoltre, i quark fisici sono Uy, ur,, Ugr € up.

Quindi riassumendo i quark fisici sono:

dj, = Drapdj = Urap (5.15.23)
dsy = Dy b, % = Upapuly
inoltre consideriamo:
mg O 0 my O 0
MO =10 my 0 . MW=10 m 0 (5.15.24)
0 0 my 0 0 my
per comodita di seguito indicheremo i quark fisici come:
ur 5, Up dL s dR (5.15.25)
cio€ rinominiamo:
o — u (5.15.26)
d — d (5.15.27)

La lagrangiana completa dei quark é:

Lqg=Lp+ Lga+ Lyz +Lyw + Lyu (5.15.28)
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in cul abbiamo:

3
. .2 2
Lqa= Z i [ufa ot (@L + ize Au) UL,a‘i‘UE’a ot <6M + ige Au) UR,a ™t

a=1

1 1
+djf 7" <au — ig eAM> dpo +dj , " (au - z’§ eAu) dR,a] (5.15.29)

. Vud Vus Vb ot dy,
qWV = _ﬂ (uz ) Cz ) tz) Vea Ves Ve atsy, le_
S Uy Vie Vis Vi atby,

=

(5.15.31)

Dove definiamo la matrice CKM (Cabibbo-Kobahashi-Moskawa) come V =
Uy, D, inoltre si osserva che:

ViV =(U,Df)" (ULDf)=DLUU,Df =D, Df =1. (5.15.32)

Osserviamo che in teoria V' contiene 9 parametri, ma 5 di questi parametri
sono delle fasi e possono essere riassorbite nella definizione dei quark fisici.
Quindi, abbiamo 4 parametri indipendenti: 3 angoli reali ( 612, 613, 6a23)
e una fase complessa (0) che devono essere determinati sperimentalmente.
Possiamo riscrivere V' in funzione dei 4 parametri indipendenti (notazione
cij = cos by e sij = sinb;;):

1 0 0 e 2 0 0 ci3 0 si13
V=10 C23 S923 0 1 0 0 1 0 X
0 —s23 co3 0 0 ei3 —s13 0 c3
eig 0 0 ci12 si2 0
X 0 1 0 —S19 c12 0. (5.15.33)
0 0 eis 0 0 1

La parita & esplicitamente rotta, ma potremmo avere un’invarianza per la
simmetria CP, ricordiamo che per CP abbiamo:

Wi — =Wy (5.15.34)
W — W (5.15.35)
q — —ic’q] (5.15.36)
qr  — io°q} (5.15.37)
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dunque:

3
e

quz_m [ U”VadebW +dLbVabU ULaWu]

a,b=1
(5.15.38)

si trasforma come:

3
e __
ﬁ%ﬁ:_m Z [_uf,a (U“)T VadebW dLb( ) VbuLaW+]
1

a,b=

(5.15.39)

2 sin

3
9 Z [LbO'“VabuLaW —|—ULaO' a*deijlj_
a,b=
(5.15.40)

pertanto abbiamo 'invarianza di CP solo se V = V* nel 1964 viene osservata
la violazione di CP per le interazioni deboli.
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